예제 #1
0
    sg.copy_field(g_for_avg)
    sg.prepare_AR_surrogates()
    year = 365.25
    k0 = 6.  # wavenumber of Morlet wavelet used in analysis
    fourier_factor = (4 * np.pi) / (k0 + np.sqrt(2 + np.power(k0, 2)))
    period = PERIOD * year  # frequency of interest
    s0 = period / fourier_factor  # get scale

    avg_bins_surr = np.zeros(
        (NUM_SURR, 8,
         2))  # num surr x bin no. x result no. (hot / cold extremes)

    phase_bins = get_equidistant_bins()

    for surr in range(NUM_SURR):
        sg.construct_surrogates_with_residuals()
        sg.add_seasonality(mean[:-1], var[:-1], trend[:-1])  # so SAT data
        g_for_avg.data = sg.surr_data.copy()
        g_for_avg.time = g_for_avg.time[:-1]
        tg_temp = g_for_avg.copy_data()
        g_for_avg.anomalise()  # SATA data for phase
        wave, _, _, _ = wvlt.continous_wavelet(g_for_avg.data,
                                               1,
                                               False,
                                               wvlt.morlet,
                                               dj=0,
                                               s0=s0,
                                               j1=0,
                                               k0=k0)  # perform wavelet
        phase = np.arctan2(np.imag(wave),
                           np.real(wave))  # get phases from oscillatory modes
            bins_surrogates = np.zeros((SU, NUM_SURR / NUM_FILES,
                                        sg.data.shape[1], sg.data.shape[2], 8))
            bins_surrogates_var = np.zeros_like(bins_surrogates)
            for surr_completed in range(NUM_SURR / NUM_FILES):
                # create surrogates field
                if (SURR_TYPE == 'MF') or (SURR_TYPE == 'ALL'
                                           and su_type == 0):
                    sg.construct_multifractal_surrogates(pool=pool)
                    sg.add_seasonality(0, var, trend)
                elif (SURR_TYPE == 'FT') or (SURR_TYPE == 'ALL'
                                             and su_type == 1):
                    sg.construct_fourier_surrogates_spatial(pool=pool)
                    sg.add_seasonality(0, var, trend)
                elif (SURR_TYPE == 'AR') or (SURR_TYPE == 'ALL'
                                             and su_type == 2):
                    sg.construct_surrogates_with_residuals(pool=pool)
                    sg.add_seasonality(0, var[:-1, ...], trend[:-1, ...])

                # oscillatory modes
                phase_surrs = np.zeros_like(sg.surr_data)
                job_args = [(i, j, s0, sg.surr_data[:, i, j])
                            for i in range(sg.lats.shape[0])
                            for j in range(sg.lons.shape[0])]
                job_result = map_func(_get_oscillatory_modes, job_args)
                del job_args
                # map results
                for i, j, ph in job_result:
                    phase_surrs[:, i, j] = ph
                del job_result

                if AMPLITUDE:
예제 #3
0
 # g_for_avg are SAT data
 mean, var, trend = g_for_avg.get_seasonality(detrend = True)
 sg.copy_field(g_for_avg)
 sg.prepare_AR_surrogates()
 year = 365.25
 k0 = 6. # wavenumber of Morlet wavelet used in analysis
 fourier_factor = (4 * np.pi) / (k0 + np.sqrt(2 + np.power(k0,2)))
 period = PERIOD * year # frequency of interest
 s0 = period / fourier_factor # get scale
 
 avg_bins_surr = np.zeros((NUM_SURR, 8, 2)) # num surr x bin no. x result no. (hot / cold extremes)
 
 phase_bins = get_equidistant_bins()
 
 for surr in range(NUM_SURR):
     sg.construct_surrogates_with_residuals()
     sg.add_seasonality(mean[:-1], var[:-1], trend[:-1]) # so SAT data
     g_for_avg.data = sg.surr_data.copy()
     g_for_avg.time = g_for_avg.time[:-1]
     tg_temp = g_for_avg.copy_data()
     g_for_avg.anomalise() # SATA data for phase
     wave, _, _, _ = wvlt.continous_wavelet(g_for_avg.data, 1, False, wvlt.morlet, dj = 0, s0 = s0, j1 = 0, k0 = k0) # perform wavelet
     phase = np.arctan2(np.imag(wave), np.real(wave)) # get phases from oscillatory modes
     
     avg_ndx = g_for_avg.select_date(date(1844, 4, 14), date(1926,1,1))
     phase = phase[0, avg_ndx]
     tg_temp = tg_temp[avg_ndx]
     
     sigma = np.std(tg_temp, axis = 0, ddof = 1)
     
     for i in range(phase_bins.shape[0] - 1):
예제 #4
0
        map_func = map
    
    for su_type in range(SU):
        for file_num in range(NUM_FILES):
            bins_surrogates = np.zeros((SU, NUM_SURR/NUM_FILES, sg.data.shape[1], sg.data.shape[2], 8))
            bins_surrogates_var = np.zeros_like(bins_surrogates)
            for surr_completed in range(NUM_SURR/NUM_FILES):
                # create surrogates field
                if (SURR_TYPE == 'MF') or (SURR_TYPE == 'ALL' and su_type == 0):
                    sg.construct_multifractal_surrogates(pool = pool)
                    sg.add_seasonality(0, var, trend)
                elif (SURR_TYPE == 'FT') or (SURR_TYPE == 'ALL' and su_type == 1):
                    sg.construct_fourier_surrogates_spatial(pool = pool)
                    sg.add_seasonality(0, var, trend)
                elif (SURR_TYPE == 'AR') or (SURR_TYPE == 'ALL' and su_type == 2):
                    sg.construct_surrogates_with_residuals(pool = pool)
                    sg.add_seasonality(0, var[:-1, ...], trend[:-1, ...])
            
                # oscillatory modes
                phase_surrs = np.zeros_like(sg.surr_data)
                job_args = [ (i, j, s0, sg.surr_data[:, i, j]) for i in range(sg.lats.shape[0]) for j in range(sg.lons.shape[0]) ]
                job_result = map_func(_get_oscillatory_modes, job_args)
                del job_args
                # map results
                for i, j, ph in job_result:
                    phase_surrs[:, i, j] = ph
                del job_result

                if AMPLITUDE:
                    # surrogates are now SATA, for amplitude we need SAT so plus mean, times 1 var, plus 0 trend
                    if SURR_TYPE == 'MF' or SURR_TYPE == 'FT':