예제 #1
0
num_skips = 2  # How many times to reuse an input to generate a label.

# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16  # Random set of words to evaluate similarity on.
valid_window = 100  # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64  # Number of negative examples to sample.

graph = tf.Graph()

with graph.as_default():

    # Input data.
    train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
    train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
    valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

    # Ops and variables pinned to the CPU because of missing GPU implementation
    with tf.device('/cpu:0'):
        # Look up embeddings for inputs.
        embeddings = tf.Variable(
            tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
        embed = tf.nn.embedding_lookup(embeddings, train_inputs)

        # Construct the variables for the NCE loss
        nce_weights = tf.Variable(
            tf.truncated_normal([vocabulary_size, embedding_size],
                                stddev=1.0 / math.sqrt(embedding_size)))
        nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
예제 #2
0
from src import tensorflow as tf

a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)
add = tf.add(a, b)
mul = tf.multiply(a, b)
with tf.Session() as sess:
    # Run every operation with variable input
    print("Addition with variables: %i" % sess.run(add, feed_dict={
        a: 2,
        b: 3
    }))
    print("Multiplication with variables: %i" %
          sess.run(mul, feed_dict={
              a: 2,
              b: 3
          }))
# output:
# Addition with variables: 5
# Multiplication with variables: 6
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.], [2.]])
product = tf.matmul(matrix1, matrix2)
with tf.Session() as sess:
    result = sess.run(product)
    print(result)
    #result:
    # 12
예제 #3
0
from src import tensorflow as tf

w1 = tf.Variable(tf.random_normal([2,3],stddev=1))
w2 = tf.Variable(tf.random_normal([3,1],stddev=1))

x = tf.placeholder(tf.float32,shape=[3,2],name="input")
a = tf.matmul(x,w1)
y = tf.matmul(a,w2)

with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print(sess.run(y,feed_dict={x:[[0.7,0.9],[0.1,0.4],[0.5,0.8]]}))

	cross_entropy = - tf.reduce_mean( y * tf.log(tf.clip_by_value(y,1e-10,1.0)))

	learning_rate = 0.001
	train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)

	print(sess.run(tf.trainable_variables()))
예제 #4
0
from src import tensorflow as tf

rng = numpy.random

# Parameters
learning_rate = 0.01
training_epochs = 2000
display_step = 50

# Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]

# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")

# Create Model

# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")

# Construct a linear model
activation = tf.add(tf.multiply(X, W), b)

# Minimize the squared errors
cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent
예제 #5
0
from src import tensorflow as tf

node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0) # also tf.float32 implicitly
print(node1, node2) # Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0", shape=(), dtype=float32)

sess = tf.Session()
print(sess.run([node1,node2])) #[3.0, 4.0]

node3 = tf.add(node1,node2)
print(node3) # Tensor("Add:0", shape=(), dtype=float32)
print(sess.run(node3)) # 7.0

a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a+b
print(sess.run(adder_node,{a:3,b:4})) #7.0
print(sess.run(adder_node,{a:[1,2],b:[3,4]})) #[ 4.  6.]

add_and_triple = a*3
print(sess.run(add_and_triple,{a:5})) #15.0
print(sess.run(add_and_triple,{a:[1,2]})) #[ 3.  6.]

W = tf.Variable([.3],dtype=tf.float32)
b = tf.Variable([-.3],dtype=tf.float32)		
x = tf.placeholder(tf.float32)
linear_model = W*x + b
init = tf.global_variables_initializer()
sess.run(init) # 这个时候变量才会被初始化
print(sess.run(linear_model, {x:[1,2,3,4]}))
예제 #6
0
def stylize(network,
            initial,
            initial_noiseblend,
            content,
            styles,
            preserve_colors,
            iterations,
            content_weight,
            content_weight_blend,
            style_weight,
            style_layer_weight_exp,
            style_blend_weights,
            tv_weight,
            learning_rate,
            beta1,
            beta2,
            epsilon,
            pooling,
            print_iterations=None,
            checkpoint_iterations=None):
    """
    Stylize images.

    This function yields tuples (iteration, image); `iteration` is None
    if this is the final image (the last iteration).  Other tuples are yielded
    every `checkpoint_iterations` iterations.

    :rtype: iterator[tuple[int|None,image]]
    """
    shape = (1, ) + content.shape
    style_shapes = [(1, ) + style.shape for style in styles]
    content_features = {}
    style_features = [{} for _ in styles]

    vgg_weights, vgg_mean_pixel = vgg.load_net(network)

    layer_weight = 1.0
    style_layers_weights = {}
    for style_layer in STYLE_LAYERS:
        style_layers_weights[style_layer] = layer_weight
        layer_weight *= style_layer_weight_exp

    # normalize style layer weights
    layer_weights_sum = 0
    for style_layer in STYLE_LAYERS:
        layer_weights_sum += style_layers_weights[style_layer]
    for style_layer in STYLE_LAYERS:
        style_layers_weights[style_layer] /= layer_weights_sum

    # compute content features in feedforward mode
    g = tf.Graph()
    with g.as_default(), g.device('/cpu:0'), tf.Session() as sess:
        image = tf.placeholder('float', shape=shape)
        net = vgg.net_preloaded(vgg_weights, image, pooling)
        content_pre = np.array([vgg.preprocess(content, vgg_mean_pixel)])
        for layer in CONTENT_LAYERS:
            content_features[layer] = net[layer].eval(
                feed_dict={image: content_pre})

    # compute style features in feedforward mode
    for i in range(len(styles)):
        g = tf.Graph()
        with g.as_default(), g.device('/cpu:0'), tf.Session() as sess:
            image = tf.placeholder('float', shape=style_shapes[i])
            net = vgg.net_preloaded(vgg_weights, image, pooling)
            style_pre = np.array([vgg.preprocess(styles[i], vgg_mean_pixel)])
            for layer in STYLE_LAYERS:
                features = net[layer].eval(feed_dict={image: style_pre})
                features = np.reshape(features, (-1, features.shape[3]))
                gram = np.matmul(features.T, features) / features.size
                style_features[i][layer] = gram

    initial_content_noise_coeff = 1.0 - initial_noiseblend

    # make stylized image using backpropogation
    with tf.Graph().as_default():
        if initial is None:
            noise = np.random.normal(size=shape, scale=np.std(content) * 0.1)
            initial = tf.random_normal(shape) * 0.256
        else:
            initial = np.array([vgg.preprocess(initial, vgg_mean_pixel)])
            initial = initial.astype('float32')
            noise = np.random.normal(size=shape, scale=np.std(content) * 0.1)
            initial = (initial) * initial_content_noise_coeff + (
                tf.random_normal(shape) *
                0.256) * (1.0 - initial_content_noise_coeff)
        image = tf.Variable(initial)
        net = vgg.net_preloaded(vgg_weights, image, pooling)

        # content loss
        content_layers_weights = {}
        content_layers_weights['relu4_2'] = content_weight_blend
        content_layers_weights['relu5_2'] = 1.0 - content_weight_blend

        content_loss = 0
        content_losses = []
        for content_layer in CONTENT_LAYERS:
            content_losses.append(
                content_layers_weights[content_layer] * content_weight *
                (2 * tf.nn.l2_loss(net[content_layer] -
                                   content_features[content_layer]) /
                 content_features[content_layer].size))
        content_loss += reduce(tf.add, content_losses)

        # style loss
        style_loss = 0
        for i in range(len(styles)):
            style_losses = []
            for style_layer in STYLE_LAYERS:
                layer = net[style_layer]
                _, height, width, number = map(lambda i: i.value,
                                               layer.get_shape())
                size = height * width * number
                feats = tf.reshape(layer, (-1, number))
                gram = tf.matmul(tf.transpose(feats), feats) / size
                style_gram = style_features[i][style_layer]
                style_losses.append(style_layers_weights[style_layer] * 2 *
                                    tf.nn.l2_loss(gram - style_gram) /
                                    style_gram.size)
            style_loss += style_weight * style_blend_weights[i] * reduce(
                tf.add, style_losses)

        # total variation denoising
        tv_y_size = _tensor_size(image[:, 1:, :, :])
        tv_x_size = _tensor_size(image[:, :, 1:, :])
        tv_loss = tv_weight * 2 * (
            (tf.nn.l2_loss(image[:, 1:, :, :] - image[:, :shape[1] - 1, :, :])
             / tv_y_size) +
            (tf.nn.l2_loss(image[:, :, 1:, :] - image[:, :, :shape[2] - 1, :])
             / tv_x_size))
        # overall loss
        loss = content_loss + style_loss + tv_loss

        # optimizer setup
        train_step = tf.train.AdamOptimizer(learning_rate, beta1, beta2,
                                            epsilon).minimize(loss)

        def print_progress():
            stderr.write('  content loss: %g\n' % content_loss.eval())
            stderr.write('    style loss: %g\n' % style_loss.eval())
            stderr.write('       tv loss: %g\n' % tv_loss.eval())
            stderr.write('    total loss: %g\n' % loss.eval())

        # optimization
        best_loss = float('inf')
        best = None
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            stderr.write('Optimization started...\n')
            if (print_iterations and print_iterations != 0):
                print_progress()
            for i in range(iterations):
                stderr.write('Iteration %4d/%4d\n' % (i + 1, iterations))
                train_step.run()

                last_step = (i == iterations - 1)
                if last_step or (print_iterations
                                 and i % print_iterations == 0):
                    print_progress()

                if (checkpoint_iterations
                        and i % checkpoint_iterations == 0) or last_step:
                    this_loss = loss.eval()
                    if this_loss < best_loss:
                        best_loss = this_loss
                        best = image.eval()

                    img_out = vgg.unprocess(best.reshape(shape[1:]),
                                            vgg_mean_pixel)

                    if preserve_colors and preserve_colors == True:
                        original_image = np.clip(content, 0, 255)
                        styled_image = np.clip(img_out, 0, 255)

                        # Luminosity transfer steps:
                        # 1. Convert stylized RGB->grayscale accoriding to Rec.601 luma (0.299, 0.587, 0.114)
                        # 2. Convert stylized grayscale into YUV (YCbCr)
                        # 3. Convert original image into YUV (YCbCr)
                        # 4. Recombine (stylizedYUV.Y, originalYUV.U, originalYUV.V)
                        # 5. Convert recombined image from YUV back to RGB

                        # 1
                        styled_grayscale = rgb2gray(styled_image)
                        styled_grayscale_rgb = gray2rgb(styled_grayscale)

                        # 2
                        styled_grayscale_yuv = np.array(
                            Image.fromarray(
                                styled_grayscale_rgb.astype(
                                    np.uint8)).convert('YCbCr'))

                        # 3
                        original_yuv = np.array(
                            Image.fromarray(original_image.astype(
                                np.uint8)).convert('YCbCr'))

                        # 4
                        w, h, _ = original_image.shape
                        combined_yuv = np.empty((w, h, 3), dtype=np.uint8)
                        combined_yuv[..., 0] = styled_grayscale_yuv[..., 0]
                        combined_yuv[..., 1] = original_yuv[..., 1]
                        combined_yuv[..., 2] = original_yuv[..., 2]

                        # 5
                        img_out = np.array(
                            Image.fromarray(combined_yuv,
                                            'YCbCr').convert('RGB'))

                    yield ((None if last_step else i), img_out)
예제 #7
0
from src import tensorflow as tf
# Import MINST data
from src.tensorflow import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

# Parameters
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1

# tf Graph Input
x = tf.placeholder(tf.float32,
                   [None, 784])  # mnist data image of shape 28*28=784
y = tf.placeholder(tf.float32,
                   [None, 10])  # 0-9 digits recognition => 10 classes

# Set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

# Construct model
pred = tf.nn.softmax(tf.matmul(x, W) + b)  # Softmax

# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=1))
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# Initializing the variables
init = tf.initialize_all_variables()
예제 #8
0
from numpy.random import RandomState

from src import tensorflow as tf

batch_size = 8

w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))

x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')

a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)

rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1 + x2 < 1)] for (x1, x2) in X]

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print("before training...")
    print(sess.run(w1))
    print(sess.run(w2))

    STEPS = 5000
    for i in range(STEPS):
예제 #9
0
#coding:utf-8
'''
线性层的softmax回归模型识别手写字
'''
import input_data

from src import tensorflow as tf

#mnist数据输入
mnist = input_data.read_data_sets("MNIST_data/", one_hot = True)

x = tf.placeholder("float", [None, 784]) #placeholder是一个占位符,None表示此张量的第一个维度可以是任何长度的

#
w = tf.Variable(tf.zeros([784,10])) #定义w维度是:[784,10],初始值是0
b = tf.Variable(tf.zeros([10])) # 定义b维度是:[10],初始值是0

#
y = tf.nn.softmax(tf.matmul(x,w) + b)

# loss
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #用 tf.log 计算 y 的每个元素的对数。接下来,我们把 y_ 的每一个元素和 tf.log(y_) 的对应元素相乘。最后,用 tf.reduce_sum 计算张量的所有元素的总和。

# 梯度下降
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

# 初始化
init = tf.initialize_all_variables()

# Session
예제 #10
0
from __future__ import print_function

import numpy as np

from src import tensorflow as tf
# Import MNIST data
from src.tensorflow import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000)  #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200)  #200 for testing

# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])

# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))),
                         reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)

accuracy = 0.

# Initializing the variables
init = tf.global_variables_initializer()

# Launch the graph
예제 #11
0
    #dlayer_1 = tf.nn.dropout(layer_1, 0.5)
    #layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    #layer_2 = tf.nn.relu(layer_2)
    # Output layer with linear activation
    # out_layer = tf.matmul(layer_1, weights['out']) + biases['out']
    # return out_layer
    return layer_1


embedding = {
    'input':
    tf.Variable(tf.random_uniform([len(sku_dict) + 1, emb_size], -1.0, 1.0))
    # 'output':tf.Variable(tf.random_uniform([len(label_dict)+1, emb_size], -1.0, 1.0))
}

emb_mask = tf.placeholder(tf.float32, shape=[None, max_window_size, 1])
word_num = tf.placeholder(tf.float32, shape=[None, 1])

x_batch = tf.placeholder(tf.int32, shape=[None, max_window_size])
y_batch = tf.placeholder(tf.int64, [None, 1])

input_embedding = tf.nn.embedding_lookup(embedding['input'], x_batch)
project_embedding = tf.div(
    tf.reduce_sum(tf.multiply(input_embedding, emb_mask), 1), word_num)

# Construct model
pred = multilayer_perceptron(project_embedding, weights, biases)

# Construct the variables for the NCE loss
nce_weights = tf.Variable(
    tf.truncated_normal([n_classes, n_hidden_1],