def train(config, model, train_iter, dev_iter, test_iter, model_name): start_time = time.time() print(model) model.train() optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate) # 优化器 total_batch = 0 # 记录进行到多少batch dev_best_loss = float('inf') last_improve = 0 # 记录上次验证集loss下降的batch数 flag = False # 记录是否很久没有效果提升 writer = SummaryWriter(log_dir=config.log_path + '/' + time.strftime('%m-%d_%H.%M', time.localtime())) for epoch in range(config.num_epochs): print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs)) for i, (trains, labels) in enumerate(train_iter): trains = trains.to(config.device) labels = labels.to(config.device) outputs = model(trains) loss = F.cross_entropy(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if total_batch % 100 == 0: # 每多少轮输出在训练集和验证集上的效果 true = labels.data.cpu() predic = torch.max(outputs.data, 1)[1].cpu() train_acc = metrics.accuracy_score(true, predic) dev_acc, dev_loss = evaluate(config, model, dev_iter) if dev_loss < dev_best_loss: dev_best_loss = dev_loss torch.save(model.state_dict(), config.save_path + model_name + '.pt') improve = '*save model*' last_improve = total_batch else: improve = '' time_dif = get_time_dif(start_time) msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}' print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve)) writer.add_scalar("loss/train", loss.item(), total_batch) writer.add_scalar("loss/dev", dev_loss, total_batch) writer.add_scalar("acc/train", train_acc, total_batch) writer.add_scalar("acc/dev", dev_acc, total_batch) model.train() total_batch += 1 if total_batch - last_improve > config.require_improvement: # 验证集loss超过1000batch没下降,结束训练 print("No optimization for a long time, auto-stopping...") flag = True break if flag: break writer.close() test(config, model, test_iter, model_name)
def test(config, model, test_iter, model_name): # test model.load_state_dict(torch.load(config.save_path + model_name + '.pt')) model.eval() start_time = time.time() test_acc, test_loss, test_report, test_confusion = evaluate(config, model, test_iter, test=True) msg = 'Test Loss: {0:>5.2}, Test Acc: {1:>6.2%}' print(msg.format(test_loss, test_acc)) print("Precision, Recall and F1-Score...") print(test_report) print("Confusion Matrix...") print(test_confusion) time_dif = get_time_dif(start_time) print("Time usage:", time_dif)
def train(config, model, train_iter, dev_iter, test_iter): start_time = time.time() model.train() if config.model_name.isupper(): print('User Adam...') print(config.device) optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate) # 学习率指数衰减,每次epoch:学习率 = gamma * 学习率 # scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) else: print('User AdamW...') print(config.device) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] # optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate) optimizer = AdamW(optimizer_grouped_parameters, lr=config.learning_rate, eps=config.eps) # scheduler = get_linear_schedule_with_warmup( # optimizer, # num_warmup_steps=0, # num_training_steps=((len(train_iter) * num_train_epochs) // \ # (config.batch_size * config.gradient_accumulation_steps)) + 1000) total_batch = 0 # 记录进行到多少batch dev_best_loss = float('inf') last_improve = 0 # 记录上次验证集loss下降的batch数 flag = False # 记录是否很久没有效果提升 for epoch in range(config.num_epochs): print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs)) # scheduler.step() # 学习率衰减 for i, (trains, mask, tokens, labels) in tqdm(enumerate(train_iter)): trains = trains.to(config.device) labels = labels.to(config.device) mask = mask.to(config.device) tokens = tokens.to(config.device) outputs = model((trains, mask, tokens)) model.zero_grad() loss = F.cross_entropy(outputs, labels) loss.backward() optimizer.step() # scheduler.step() if total_batch % 1000 == 0 and total_batch != 0: # 每多少轮输出在训练集和验证集上的效果 true = labels.data.cpu() predic = torch.max(outputs.data, 1)[1].cpu() train_acc = metrics.accuracy_score(true, predic) dev_acc, dev_loss = evaluate(config, model, dev_iter) if dev_loss < dev_best_loss: dev_best_loss = dev_loss torch.save(model.state_dict(), config.save_path) improve = '*' last_improve = total_batch else: improve = '' time_dif = get_time_dif(start_time) msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}' print( msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve)) model.train() total_batch += 1 if total_batch - last_improve > config.require_improvement: # 验证集loss超过1000batch没下降,结束训练 print("No optimization for a long time, auto-stopping...") flag = True break if flag: break test(config, model, test_iter)