""" ############################### draw spline using average position of the center of the vertebrae ############################### """ data_folder = xray_dir + '/data/LL/' result_folder = '/Users/ruhansa/Desktop/train/result/clf_blur_canny_1_20_0413/whole_boxes/' if ~os._exists(result_folder): os.mkdir(result_folder) starti = 2 endi = 10 for i in range(starti, endi+1): testn = str(i) fn = data_folder + testn + '.jpg' arr=filename2arr(fn) img = Image.open(open(fn, "rb")) fn = '/Users/ruhansa/Desktop/train/result/clf_blur_canny_1_20_0413/' + testn + '_boxes.pkl' boxes = pickle.load(open(fn, 'rb')) boxes, _, _ = non_max_suppression_center(boxes, overlapThresh=0.3) img = add_boxes(boxes, img) img.save(result_folder + testn + '.jpg')
# report.write("==================== sample #: " + testn + "==========================\n") t0 = time.time() fn = data_folder + testn + '.jpg' arr = filename2arr(fn) img3 = Image.fromarray(arr) ### step1: get bounding boxes fn = prev_halves_folder + testn + '_half_boxes.pkl' halves = pickle.load(open(fn, "rb")) img3 = add_boxes(halves, img3) img3.show() if debug is True: raw_input("rough detection") img3 = Image.fromarray(arr) halves_b, halves_c, halves_wh= non_max_suppression_center(halves) pts=get_spline(halves_b, 0.2*arr.shape[0], 0.75*arr.shape[0]) if pts is not None: img3 = add_boxes(halves_b, img3) img3.show() if debug is True: raw_input("clear out the clutter") img3 = add_points(pts, img3) img3.show() if debug is True: raw_input("rough curvature line") fn = prev_whole_folder + testn + '_boxes.pkl' wholes = pickle.load(open(fn, "rb")) wholes_b, wholes_c, wholes_wh= non_max_suppression_center(wholes, overlapThresh=0.3) img3 = Image.fromarray(arr)