def main(): experimentValues = co.OrderedDict() experimentValues["name"] = 'test' # experimentValues["name"] = input("Please enter your name:").capitalize() fullScreen = 0 if experimentValues["name"] == 'test' else 1 mouseVisible = 1 if experimentValues["name"] == 'test' else 0 screenWidth = 600 screenHeight = 600 initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() pg.mouse.set_visible(mouseVisible) gridSize = 15 bounds = [0, 0, gridSize - 1, gridSize - 1] leaveEdgeSpace = 1 # 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) picturePath = os.path.abspath(os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath(os.path.join(os.path.join(os.getcwd(), os.pardir), 'resultsNoTimePressure')) if not os.path.exists(resultsPath): os.mkdir(resultsPath) formalTrialImage = pg.image.load(os.path.join(picturePath, 'NoTimePressureExp.png')) finishImage = pg.image.load(os.path.join(picturePath, 'finish.png')) restImage = pg.image.load(os.path.join(picturePath, 'rest.png')) formalTrialImage = pg.transform.scale(formalTrialImage, (screenWidth, screenHeight)) restImage = pg.transform.scale(restImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) finishImage = pg.transform.scale(finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawText = DrawText(screen, drawBackground) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) # condition maps condition = namedtuple('condition', 'name decisionSteps initAgent avoidCommitPoint crossPoint targetDisToCrossPoint fixedObstacles') map1ObsStep0a = condition(name='expCondition1', decisionSteps=0, initAgent=(0, 2), avoidCommitPoint=(1, 2), crossPoint=(3, 3), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep0a = condition(name='expCondition2', decisionSteps=0, initAgent=(0, 2), avoidCommitPoint=(1, 2), crossPoint=(4, 4), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep0b = condition(name='expCondition1', decisionSteps=0, initAgent=(2, 0), avoidCommitPoint=(2, 1), crossPoint=(3, 3), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep0b = condition(name='expCondition2', decisionSteps=0, initAgent=(2, 0), avoidCommitPoint=(2, 1), crossPoint=(4, 4), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep1a = condition(name='expCondition1', decisionSteps=1, initAgent=(1, 0), avoidCommitPoint=(2, 1), crossPoint=(3, 3), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep1a = condition(name='expCondition2', decisionSteps=1, initAgent=(1, 0), avoidCommitPoint=(2, 1), crossPoint=(4, 4), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep1b = condition(name='expCondition1', decisionSteps=1, initAgent=(0, 1), avoidCommitPoint=(1, 2), crossPoint=(3, 3), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep1b = condition(name='expCondition2', decisionSteps=1, initAgent=(0, 1), avoidCommitPoint=(1, 2), crossPoint=(4, 4), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep2 = condition(name='expCondition1', decisionSteps=2, initAgent=(0, 0), avoidCommitPoint=(2, 2), crossPoint=(3, 3), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep2 = condition(name='expCondition2', decisionSteps=2, initAgent=(0, 0), avoidCommitPoint=(2, 2), crossPoint=(4, 4), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep4 = condition(name='expCondition1', decisionSteps=4, initAgent=(0, 0), avoidCommitPoint=(3, 3), crossPoint=(4, 4), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(2, 2), (2, 0), (2, 4), (0, 2), (4, 2)]) map2ObsStep4 = condition(name='expCondition2', decisionSteps=4, initAgent=(0, 0), avoidCommitPoint=(3, 3), crossPoint=(5, 5), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(2, 2), (2, 0), (2, 4), (0, 2), (4, 2), (2, 5), (5, 2)]) map1ObsStep6 = condition(name='expCondition1', decisionSteps=6, initAgent=(0, 0), avoidCommitPoint=(4, 4), crossPoint=(5, 5), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(3, 3), (4, 0), (3, 1), (3, 5), (5, 3), (1, 3), (0, 4)]) map2ObsStep6 = condition(name='expCondition2', decisionSteps=6, initAgent=(0, 0), avoidCommitPoint=(4, 4), crossPoint=(6, 6), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(3, 3), (4, 0), (3, 1), (3, 5), (5, 3), (1, 3), (0, 4), (3, 6), (6, 3), ]) specialCondition = condition(name='specialCondition', decisionSteps=0, initAgent=(0, 0), avoidCommitPoint=[-1, -1], crossPoint=(5, 5), targetDisToCrossPoint=[5], fixedObstacles=[(3, 0), (0, 3), (1, 4), (1, 6), (4, 1), (6, 1), (6, 2), (2, 6), (5, 3), (3, 5)]) controlCondition1 = condition(name='controlCondition', decisionSteps=0, initAgent=(0, 0), avoidCommitPoint=[-1, -1], crossPoint=(5, 5), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(3, 0), (0, 3), (1, 4), (1, 6), (4, 1), (6, 1), (6, 2), (2, 6), (5, 3), (3, 5)]) controlCondition2 = condition(name='controlCondition', decisionSteps=0, initAgent=(0, 0), avoidCommitPoint=[-1, -1], crossPoint=(5, 5), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(3, 0), (0, 3), (1, 4), (5, 3), (4, 1), (3, 5), (2, 2), (6, 1), (6, 2), (1, 6), (2, 6), (5, 3)]) numOfObstacles = 18 controlDiffList = [0, 1, 2] minSteps = 8 maxsteps = 13 minDistanceBetweenTargets = 4 minDistanceBetweenGrids = max(controlDiffList) + 1 maxDistanceBetweenGrids = calculateMaxDistanceOfGrid(bounds) - minDistanceBetweenGrids randomWorld = RandomWorld(bounds, minDistanceBetweenGrids, maxDistanceBetweenGrids, numOfObstacles) randomCondition = namedtuple('condition', 'name creatMap decisionSteps minSteps maxsteps minDistanceBetweenTargets controlDiffList') randomMaps = randomCondition(name='randomCondition', creatMap=randomWorld, decisionSteps=0, minSteps=minSteps, maxsteps=maxsteps, minDistanceBetweenTargets=minDistanceBetweenTargets, controlDiffList=controlDiffList) conditionList = [map1ObsStep0a, map1ObsStep0b, map1ObsStep1a, map1ObsStep1b, controlCondition1] + [map1ObsStep2, map1ObsStep4, map1ObsStep6] * 2 + [map2ObsStep0a, map2ObsStep0b, map2ObsStep1a, map2ObsStep1b, controlCondition2] + [map2ObsStep2, map2ObsStep4, map2ObsStep6] * 2 + [randomMaps] * 2 targetDiffsList = [0, 1, 2, 'controlAvoid'] # conditionList = [randomMaps] * 10 # targetDiffsList = ['controlAvoid'] numBlocks = 3 expDesignValues = [[condition, diff] for condition in conditionList for diff in targetDiffsList] * numBlocks numExpTrial = len(expDesignValues) numNormalTrial = len(expDesignValues) random.shuffle(expDesignValues) specialDesign = [specialCondition, 0] expDesignValues.append(specialDesign) numTrialsPerNoiseBlock = 3 noiseCondition = list(permutations([1, 2, 0], numTrialsPerNoiseBlock)) + [(1, 1, 1)] blockNumber = int(numNormalTrial / numTrialsPerNoiseBlock) noiseDesignValues = createNoiseDesignValue(noiseCondition, blockNumber) # noiseDesignValues = [0] * numNormalTrials # deubg # expDesignValues = [specialDesign] * 2 # noiseDesignValues = ['special'] * 2 # debugs print('trial:', len(expDesignValues)) if len(expDesignValues) != len(noiseDesignValues): print(len(noiseDesignValues)) raise Exception("unmatch condition design") writerPath = os.path.join(resultsPath, experimentValues["name"] + '_noTime' + '.csv') writer = WriteDataFrameToCSV(writerPath) rotatePoint = RotatePoint(gridSize) isInBoundary = IsInBoundary([0, gridSize - 1], [0, gridSize - 1]) rotateAngles = [0, 90, 180, 270] creatMap = CreatMap(rotateAngles, gridSize, rotatePoint, numOfObstacles) pygameActionDict = {pg.K_UP: (0, -1), pg.K_DOWN: (0, 1), pg.K_LEFT: (-1, 0), pg.K_RIGHT: (1, 0)} responseTimeLimits = 8000 humanController = HumanController(pygameActionDict, responseTimeLimits) controller = humanController checkBoundary = CheckBoundary([0, gridSize - 1], [0, gridSize - 1]) noiseActionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)] # noiseActionSpace = [(0, 0)] normalNoise = AimActionWithNoise(noiseActionSpace, gridSize) specialNoise = backToCrossPointNoise normalTrial = NormalTrial(controller, drawNewState, drawText, normalNoise, checkBoundary) specialTrial = SpecialTrial(controller, drawNewState, drawText, specialNoise, checkBoundary) restTrialInterval = math.ceil(numExpTrial / 4) restTrialIndex = list(range(restTrialInterval, numExpTrial, restTrialInterval)) experiment = ObstacleExperiment(creatMap, normalTrial, specialTrial, writer, experimentValues, drawImage, restTrialIndex, restImage) # start exp drawImage(formalTrialImage) experiment(noiseDesignValues, expDesignValues) drawImage(finishImage)
def main(): picturePath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'results')) machinePolicyPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'machinePolicy')) dataPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'conditionData')) gridSize = 15 bounds = [0, 0, gridSize - 1, gridSize - 1] screenWidth = 600 screenHeight = 600 fullScreen = False renderOn = False initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() pg.mouse.set_visible(False) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) introductionImage = pg.image.load( os.path.join(picturePath, 'introduction.png')) finishImage = pg.image.load(os.path.join(picturePath, 'finish.png')) introductionImage = pg.transform.scale(introductionImage, (screenWidth, screenHeight)) finishImage = pg.transform.scale( finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawText = DrawText(screen, drawBackground) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) # condition maps condition = namedtuple( 'condition', 'name decisionSteps initAgent avoidCommitPoint crossPoint targetDisToCrossPoint fixedObstacles' ) map1ObsStep0a = condition(name='expCondition1', decisionSteps=0, initAgent=(0, 2), avoidCommitPoint=(1, 2), crossPoint=(3, 3), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep0a = condition(name='expCondition2', decisionSteps=0, initAgent=(0, 2), avoidCommitPoint=(1, 2), crossPoint=(4, 4), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep0b = condition(name='expCondition1', decisionSteps=0, initAgent=(2, 0), avoidCommitPoint=(2, 1), crossPoint=(3, 3), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep0b = condition(name='expCondition2', decisionSteps=0, initAgent=(2, 0), avoidCommitPoint=(2, 1), crossPoint=(4, 4), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep1a = condition(name='expCondition1', decisionSteps=1, initAgent=(1, 0), avoidCommitPoint=(2, 1), crossPoint=(3, 3), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep1a = condition(name='expCondition2', decisionSteps=1, initAgent=(1, 0), avoidCommitPoint=(2, 1), crossPoint=(4, 4), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep1b = condition(name='expCondition1', decisionSteps=1, initAgent=(0, 1), avoidCommitPoint=(1, 2), crossPoint=(3, 3), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep1b = condition(name='expCondition2', decisionSteps=1, initAgent=(0, 1), avoidCommitPoint=(1, 2), crossPoint=(4, 4), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep2 = condition(name='expCondition1', decisionSteps=2, initAgent=(0, 0), avoidCommitPoint=(2, 2), crossPoint=(3, 3), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(1, 1), (1, 3), (3, 1)]) map2ObsStep2 = condition(name='expCondition2', decisionSteps=2, initAgent=(0, 0), avoidCommitPoint=(2, 2), crossPoint=(4, 4), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(1, 1), (1, 3), (3, 1), (1, 4), (4, 1)]) map1ObsStep4 = condition(name='expCondition1', decisionSteps=4, initAgent=(0, 0), avoidCommitPoint=(3, 3), crossPoint=(4, 4), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(2, 2), (2, 0), (2, 4), (0, 2), (4, 2)]) map2ObsStep4 = condition(name='expCondition2', decisionSteps=4, initAgent=(0, 0), avoidCommitPoint=(3, 3), crossPoint=(5, 5), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(2, 2), (2, 0), (2, 4), (0, 2), (4, 2), (2, 5), (5, 2)]) map1ObsStep6 = condition(name='expCondition1', decisionSteps=6, initAgent=(0, 0), avoidCommitPoint=(4, 4), crossPoint=(5, 5), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[(3, 3), (4, 0), (3, 1), (3, 5), (5, 3), (1, 3), (0, 4)]) map2ObsStep6 = condition(name='expCondition2', decisionSteps=6, initAgent=(0, 0), avoidCommitPoint=(4, 4), crossPoint=(6, 6), targetDisToCrossPoint=[4, 5, 6], fixedObstacles=[ (3, 3), (4, 0), (3, 1), (3, 5), (5, 3), (1, 3), (0, 4), (3, 6), (6, 3), ]) specialCondition = condition(name='specialCondition', decisionSteps=0, initAgent=(0, 0), avoidCommitPoint=[-1, -1], crossPoint=(5, 5), targetDisToCrossPoint=[5], fixedObstacles=[ (3, 0), (0, 3), (1, 4), (1, 6), (4, 1), (6, 1), (6, 2), (2, 6), (5, 3), (3, 5) ]) controlCondition1 = condition(name='controlCondition', decisionSteps=0, initAgent=(0, 0), avoidCommitPoint=[-1, -1], crossPoint=(5, 5), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[ (3, 0), (0, 3), (1, 4), (1, 6), (4, 1), (6, 1), (6, 2), (2, 6), (5, 3), (3, 5) ]) controlCondition2 = condition(name='controlCondition', decisionSteps=0, initAgent=(0, 0), avoidCommitPoint=[-1, -1], crossPoint=(5, 5), targetDisToCrossPoint=[5, 6, 7], fixedObstacles=[ (3, 0), (0, 3), (1, 4), (5, 3), (4, 1), (3, 5), (2, 2), (6, 1), (6, 2), (1, 6), (2, 6), (5, 3) ]) numOfObstacles = 18 controlDiffList = [0, 1, 2] minSteps = 8 maxsteps = 13 minDistanceBetweenTargets = 4 minDistanceBetweenGrids = max(controlDiffList) + 1 maxDistanceBetweenGrids = calculateMaxDistanceOfGrid( bounds) - minDistanceBetweenGrids randomWorld = RandomWorld(bounds, minDistanceBetweenGrids, maxDistanceBetweenGrids, numOfObstacles) randomCondition = namedtuple( 'condition', 'name creatMap decisionSteps minSteps maxsteps minDistanceBetweenTargets controlDiffList' ) randomMaps = randomCondition( name='randomCondition', creatMap=randomWorld, decisionSteps=0, minSteps=minSteps, maxsteps=maxsteps, minDistanceBetweenTargets=minDistanceBetweenTargets, controlDiffList=controlDiffList) # conditionList = [map1ObsStep0a, map1ObsStep0b, map1ObsStep1a, map1ObsStep1b, controlCondition1] + [map1ObsStep2, map1ObsStep4, map1ObsStep6] * 2 + [map2ObsStep0a, map2ObsStep0b, map2ObsStep1a, map2ObsStep1b, controlCondition2] + [map2ObsStep2, map2ObsStep4, map2ObsStep6] * 2 + [randomMaps] * 2 # targetDiffsList = [0, 1, 2, 'controlAvoid'] conditionList = [ map1ObsStep0a, map1ObsStep0b, map1ObsStep1a, map1ObsStep1b, controlCondition1 ] + [map1ObsStep2, map1ObsStep4, map1ObsStep6] * 2 + [ map2ObsStep0a, map2ObsStep0b, map2ObsStep1a, map2ObsStep1b, controlCondition2 ] + [map2ObsStep2, map2ObsStep4, map2ObsStep6] * 2 targetDiffsList = [0] # conditionList = [map1ObsStep0a] + [randomMaps] * 2 n = 1 numBlocks = 3 * n expDesignValues = [[condition, diff] for condition in conditionList for diff in targetDiffsList] * numBlocks numExpTrial = len(expDesignValues) # conditionList = [condition2] specialDesign = [specialCondition, 0] numTrialsPerNoiseBlock = 3 noiseCondition = list(permutations([1, 2, 0], numTrialsPerNoiseBlock)) + [(1, 1, 1)] blockNumber = int(numExpTrial / numTrialsPerNoiseBlock) noiseDesignValues = createNoiseDesignValue(noiseCondition, blockNumber) rotatePoint = RotatePoint(gridSize) isInBoundary = IsInBoundary([0, gridSize - 1], [0, gridSize - 1]) rotateAngles = [0, 90, 180, 270] creatMap = CreatMap(rotateAngles, gridSize, rotatePoint, numOfObstacles) checkBoundary = CheckBoundary([0, gridSize - 1], [0, gridSize - 1]) noiseActionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)] normalNoise = AimActionWithNoise(noiseActionSpace, gridSize) specialNoise = backToCrossPointNoise # inferGoalPosterior = InferGoalPosterior(goalPolicy) softmaxBetaList = [2.5] noise = 0.067 gamma = 0.9 goalReward = [30, 30] actionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0)] runVI = RunVI(gridSize, actionSpace, noiseActionSpace, noise, gamma, goalReward) intentionInfoScale = [-0.5, 0.5] for softmaxBeta in softmaxBetaList: for i in range(20): print(i) expDesignValues = [[condition, diff] for condition in conditionList for diff in targetDiffsList] * numBlocks random.shuffle(expDesignValues) expDesignValues.append(specialDesign) runModel = RunIntentionModel(runVI, softmaxBeta, intentionInfoScale) # modelController = ModelControllerOnline(softmaxBeta) # modelController = AvoidCommitModel(softmaxBeta, actionSpace, checkBoundary) controller = SampleSoftmaxAction(softmaxBeta) renderOn = 1 normalTrial = NormalTrialOnline(renderOn, controller, drawNewState, drawText, normalNoise, checkBoundary) specialTrial = SpecialTrialOnline(renderOn, controller, drawNewState, drawText, specialNoise, checkBoundary) experimentValues = co.OrderedDict() experimentValues["name"] = "noise" + str( noise) + '_' + "intentionInfoScale" + str( intentionInfoScale[1]) + '_' + str(i) # resultsDirPath = os.path.join(resultsPath, "Intention-" + "noise" + str(noise) + '_' + "softmaxBeta" + str(softmaxBeta)) resultsDirPath = os.path.join(resultsPath, "showIntention3") if not os.path.exists(resultsDirPath): os.mkdir(resultsDirPath) writerPath = os.path.join(resultsDirPath, experimentValues["name"] + '.csv') writer = WriteDataFrameToCSV(writerPath) experiment = IntentionModelSimulation(creatMap, normalTrial, specialTrial, writer, experimentValues, drawImage, resultsPath, runModel) experiment(noiseDesignValues, expDesignValues)
def main(): picturePath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'results')) machinePolicyPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'machinePolicy')) dataPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'conditionData')) df = pd.read_csv( os.path.join(dataPath, 'DesignConditionForAvoidCommitmentZone.csv')) df['intentionedDisToTargetMin'] = df.apply( lambda x: x['minDis'] - x['avoidCommitmentZone'], axis=1) gridSize = 15 screenWidth = 600 screenHeight = 600 fullScreen = False renderOn = False initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() pg.mouse.set_visible(False) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) introductionImage = pg.image.load( os.path.join(picturePath, 'introduction.png')) finishImage = pg.image.load(os.path.join(picturePath, 'finish.png')) introductionImage = pg.transform.scale(introductionImage, (screenWidth, screenHeight)) finishImage = pg.transform.scale( finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawText = DrawText(screen, drawBackground) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) width = [3, 4, 5] height = [3, 4, 5] intentionDis = [2, 4, 6] direction = [45, 135, 225, 315] distanceDiffList = [0, 2, 4] minDisList = range(5, 15) intentionedDisToTargetList = [2, 4, 6] rectAreaSize = [6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 36] lineAreaSize = [4, 5, 6, 7, 8, 9, 10] condition = namedtuple( 'condition', 'name areaType distanceDiff minDis areaSize intentionedDisToTarget') expCondition = condition(name='expCondition', areaType='rect', distanceDiff=[0], minDis=minDisList, areaSize=rectAreaSize, intentionedDisToTarget=intentionedDisToTargetList) rectCondition = condition( name='controlRect', areaType='rect', distanceDiff=[2, 4], minDis=minDisList, areaSize=rectAreaSize, intentionedDisToTarget=intentionedDisToTargetList) straightLineCondition = condition( name='straightLine', areaType='straightLine', distanceDiff=distanceDiffList, minDis=minDisList, areaSize=lineAreaSize, intentionedDisToTarget=intentionedDisToTargetList) midLineCondition = condition( name='MidLine', areaType='midLine', distanceDiff=distanceDiffList, minDis=minDisList, areaSize=lineAreaSize, intentionedDisToTarget=intentionedDisToTargetList) noAreaCondition = condition( name='noArea', areaType='none', distanceDiff=distanceDiffList, minDis=minDisList, areaSize=[0], intentionedDisToTarget=intentionedDisToTargetList) # Q_dict = pickle.load(open(os.path.join(machinePolicyPath, "noise0.1commitAreaGird15_policy.pkl"), "rb")) goal_Q_dict = pickle.load( open( os.path.join(machinePolicyPath, "noise0.1commitAreaGoalGird15_policy.pkl"), "rb")) actionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0)] checkBoundary = CheckBoundary([0, gridSize - 1], [0, gridSize - 1]) noiseActionSpace = [(0, -2), (0, 2), (-2, 0), (2, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)] normalNoise = NormalNoise(noiseActionSpace, gridSize) sampleToZoneNoise = SampleToZoneNoise(noiseActionSpace) initPrior = [0.5, 0.5] # softmaxBeta = 2.5 priorBeta = 5 commitBetaList = np.arange(1, 10, 1) rewardVarianceList = [50] softmaxBetaList = np.round(np.arange(0.4, 0.5, 0.01), decimals=2) softmaxBetaList = [10] print(softmaxBetaList) for softmaxBeta in softmaxBetaList: # goalPolicy = SoftmaxGoalPolicy(goal_Q_dict, softmaxBeta) # policy = SoftmaxRLPolicy(Q_dict, softmaxBeta) # for commitBeta in commitBetaList: for i in range(30): print(i) expDesignValues = [[b, h, d] for b in width for h in height for d in intentionDis] numExpTrial = len(expDesignValues) random.shuffle(expDesignValues) expDesignValues.append(random.choice(expDesignValues)) createExpCondition = CreatExpCondition(direction, gridSize) samplePositionFromCondition = SamplePositionFromCondition( df, createExpCondition, expDesignValues) numExpTrial = len(expDesignValues) - 1 numControlTrial = int(numExpTrial * 2 / 3) expTrials = [expCondition] * numExpTrial conditionList = list(expTrials + [rectCondition] * numExpTrial + [straightLineCondition] * numControlTrial + [midLineCondition] * numControlTrial + [noAreaCondition] * numControlTrial) numNormalTrials = len(conditionList) random.shuffle(conditionList) conditionList.append(expCondition) numTrialsPerBlock = 3 noiseCondition = list(permutations([1, 2, 0], numTrialsPerBlock)) noiseCondition.append((1, 1, 1)) blockNumber = int(numNormalTrials / numTrialsPerBlock) noiseDesignValues = createNoiseDesignValue(noiseCondition, blockNumber) # deubg # conditionList = [expCondition] * 27 # noiseDesignValues = ['special'] * 27 # model simulation noise = 0.1 gamma = 0.9 goalReward = 10 runVI = RunVI(gridSize, actionSpace, noiseActionSpace, noise, gamma, goalReward) intentionInfoScale = [-0.025, 0.025] runModel = RunIntentionModel(runVI, softmaxBeta, intentionInfoScale) controller = SampleSoftmaxAction(softmaxBeta) renderOn = 0 # controller = AvoidCommitModel(goal_Q_dict, Q_dict, softmaxBeta, actionSpace) normalTrial = NormalTrialOnline(controller, drawNewState, drawText, normalNoise, checkBoundary, renderOn) specialTrial = SpecialTrialOnline(controller, drawNewState, drawText, sampleToZoneNoise, checkBoundary, renderOn) experimentValues = co.OrderedDict() experimentValues["name"] = "hide0.025commitModelSoftmaxBeta" + str( softmaxBeta) + '_' + str(i) resultsDirPath = os.path.join( resultsPath, "hide0.025commitModelSoftmaxBeta" + str(softmaxBeta)) if not os.path.exists(resultsDirPath): os.makedirs(resultsDirPath) writerPath = os.path.join(resultsDirPath, experimentValues["name"] + '.csv') writer = WriteDataFrameToCSV(writerPath) experiment = CommitModelExperiment(runModel, normalTrial, specialTrial, writer, experimentValues, samplePositionFromCondition, drawImage, resultsPath) experiment(noiseDesignValues, conditionList)
def main(): gridSize = 15 picturePath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'results')) machinePolicyPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'machinePolicy')) dataPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'conditionData')) df = pd.read_csv( os.path.join(dataPath, 'DesignConditionForAvoidCommitmentZone.csv')) df['intentionedDisToTargetMin'] = df.apply( lambda x: x['minDis'] - x['avoidCommitmentZone'], axis=1) screenWidth = 600 screenHeight = 600 fullScreen = False initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() pg.mouse.set_visible(False) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) testTrialImage = pg.image.load( os.path.join(picturePath, 'testTrialTime.png')) formalTrialImage = pg.image.load( os.path.join(picturePath, 'formalTrialTime.png')) finishImage = pg.image.load(os.path.join(picturePath, 'finish.png')) restImage = pg.image.load(os.path.join(picturePath, 'rest.png')) testTrialImage = pg.transform.scale(testTrialImage, (screenWidth, screenHeight)) formalTrialImage = pg.transform.scale(formalTrialImage, (screenWidth, screenHeight)) restImage = pg.transform.scale( restImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) finishImage = pg.transform.scale( finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawText = DrawText(screen, drawBackground) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) # condition width = [5] height = [5] intentionDis = [3, 4, 5] rotateAngles = [0, 90, 180, 270] decisionSteps = [2, 4, 6, 10] targetDiffs = [0, 0, 1, 2] obstaclesMap1 = [[(2, 2), (2, 4), (2, 5), (2, 6), (4, 2), (5, 2), (6, 2)]] obstaclesMap2 = [[(3, 3), (4, 1), (1, 4), (5, 3), (3, 5), (6, 3), (3, 6)]] obstaclesMap3 = [[(4, 4), (4, 1), (4, 2), (6, 4), (4, 6), (1, 4), (2, 4)]] speicalObstacleMap = [[(4, 1), (4, 2), (6, 3), (6, 4), (1, 4), (2, 4), (3, 6), (4, 6)]] obstaclesCondition = [ obstaclesMap1, obstaclesMap2, obstaclesMap3, speicalObstacleMap ] obstaclesMaps = dict(zip(decisionSteps, obstaclesCondition)) numBlocks = 3 expDesignValues = [[b, h, d, m, diff] for b in width for h in height for d in intentionDis for m in decisionSteps for diff in targetDiffs] * numBlocks random.shuffle(expDesignValues) numExpTrial = len(expDesignValues) specialDesign = [5, 5, 4, 10, 0] expDesignValues.append(specialDesign) condition = namedtuple('condition', 'name decisionSteps') expCondition = condition(name='expCondition', decisionSteps=decisionSteps[:-1]) lineCondition = condition(name='lineCondition', decisionSteps=decisionSteps[:-1]) specialCondition = condition(name='specialCondition', decisionSteps=[10]) numControlTrial = int(numExpTrial / 2) conditionList = [expCondition] * numControlTrial + [lineCondition ] * numControlTrial # conditionList = [lineCondition] * numControlTrial random.shuffle(conditionList) conditionList.append(specialCondition) numNormalTrials = len(conditionList) numTrialsPerBlock = 3 noiseCondition = list(permutations([1, 2, 0], numTrialsPerBlock)) + [(1, 1, 1)] blockNumber = int(numNormalTrials / numTrialsPerBlock) noiseDesignValues = createNoiseDesignValue(noiseCondition, blockNumber) noise = 0.067 if noise == 0: noiseDesignValues = [0] * numNormalTrials if len(conditionList) != len(noiseDesignValues): raise Exception("unmatch condition design") print(len(conditionList)) # deubg # expDesignValues = [specialDesign] * 10 # noiseDesignValues = ['special'] * 10 # conditionList = [specialCondition] * 10 # debug experimentValues = co.OrderedDict() # experimentValues["name"] = input("Please enter your name:").capitalize() experimentValues["name"] = 'test' writerPath = os.path.join(resultsPath, 't' + experimentValues["name"] + '.csv') writer = WriteDataFrameToCSV(writerPath) baseLineWriterPath = os.path.join( resultsPath, 'baseLine' + experimentValues["name"] + '.csv') baseLineWriter = WriteDataFrameToCSV(baseLineWriterPath) rotatePoint = RotatePoint(gridSize) isInBoundary = IsInBoundary([0, gridSize - 1], [0, gridSize - 1]) creatRectMap = CreatRectMap(rotateAngles, gridSize, obstaclesMaps, rotatePoint) creatLineMap = CreatLineMap(rotateAngles, gridSize, rotatePoint, isInBoundary) samplePositionFromCondition = SamplePositionFromCondition( creatRectMap, creatLineMap, expDesignValues) pygameActionDict = { pg.K_UP: (0, -1), pg.K_DOWN: (0, 1), pg.K_LEFT: (-1, 0), pg.K_RIGHT: (1, 0) } humanController = HumanController(pygameActionDict) controller = humanController checkBoundary = CheckBoundary([0, gridSize - 1], [0, gridSize - 1]) noiseActionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)] normalNoise = AimActionWithNoise(noiseActionSpace, gridSize) specialNoise = backToCrossPointNoise normalTrial = NormalTrial(controller, drawNewState, drawText, normalNoise, checkBoundary) specialTrial = SpecialTrial(controller, drawNewState, drawText, specialNoise, checkBoundary) experiment = ObstacleExperiment(normalTrial, specialTrial, writer, experimentValues, samplePositionFromCondition, drawImage, resultsPath) singleGoalTrial = SingleGoalTrial(controller, drawNewState, drawText, normalNoise, checkBoundary) creatSingleGoalMap = CreatSingleGoalMap(gridSize) singleGoalExperiment = SingleGoalExperiment(singleGoalTrial, baseLineWriter, experimentValues, creatSingleGoalMap) baseLineTrialCondition = [6, 8, 10, 12, 14] numBaseLineTrialBlock = 2 numBaseLineTrial = len(baseLineTrialCondition) * numBaseLineTrialBlock baseLineNoiseDesignValues = np.array([ random.choice(noiseCondition) for _ in range(numBaseLineTrial) ]).flatten().tolist() baseLineConditionList = baseLineTrialCondition * numBaseLineTrialBlock random.shuffle(baseLineConditionList) drawImage(testTrialImage) singleGoalExperiment(baseLineNoiseDesignValues, baseLineConditionList) drawImage(restImage) drawImage(formalTrialImage) experiment(noiseDesignValues, conditionList) drawImage(finishImage)
def main(): picturePath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'results')) machinePolicyPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'machinePolicy')) dataPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'conditionData')) df = pd.read_csv( os.path.join(dataPath, 'DesignConditionForAvoidCommitmentZone.csv')) df['intentionedDisToTargetMin'] = df.apply( lambda x: x['minDis'] - x['avoidCommitmentZone'], axis=1) gridSize = 15 screenWidth = 600 screenHeight = 600 fullScreen = False renderOn = False initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() # pg.mouse.set_visible(False) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawText = DrawText(screen, drawBackground) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) # condition width = [5] height = [5] intentionDis = [2, 3, 4] decisionSteps = [0, 1, 2, 4, 6, 8] # decisionSteps = [1] targetDiffs = [0, 0, 1, 2] rotateAngles = [0, 90, 180, 270] obstaclesMapStep0 = [[(1, 4), (1, 5), (1, 6), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)]] obstaclesMapStep1 = [[(1, 2), (1, 4), (1, 5), (1, 6), (3, 2), (4, 2), (5, 2), (6, 2)]] obstaclesMapStep2 = [[(2, 2), (2, 4), (3, 5), (3, 6), (4, 2), (5, 3), (6, 3)], [(2, 2), (2, 4), (2, 5), (3, 6), (4, 2), (5, 2), (6, 3)], [(2, 2), (2, 4), (3, 5), (2, 6), (4, 2), (5, 3), (6, 2)]] obstaclesMapStep4 = [[(3, 3), (4, 1), (1, 4), (5, 3), (3, 5), (6, 3), (3, 6)], [(3, 3), (5, 1), (1, 5), (5, 3), (3, 5), (6, 3), (3, 6)], [(3, 3), (3, 1), (1, 3), (5, 3), (3, 5), (6, 3), (3, 6)]] obstaclesMapStep6 = [[(4, 4), (4, 1), (4, 2), (6, 4), (4, 6), (1, 4), (2, 4)], [(4, 4), (5, 1), (4, 2), (6, 4), (4, 6), (1, 5), (2, 4)], [(4, 4), (3, 1), (4, 2), (6, 4), (4, 6), (1, 3), (2, 4)]] obstaclesMapStep8 = [[(5, 5), (4, 2), (2, 4), (6, 1), (6, 2), (6, 3), (1, 6), (2, 6), (3, 6), (7, 5), (5, 7)]] obstaclesCondition = [ obstaclesMapStep0, obstaclesMapStep1, obstaclesMapStep2, obstaclesMapStep4, obstaclesMapStep6, obstaclesMapStep8 ] obstaclesMaps = dict(zip(decisionSteps, obstaclesCondition)) rotatePoint = RotatePoint(gridSize) checkBoundary = CheckBoundary([0, gridSize - 1], [0, gridSize - 1]) noiseActionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)] normalNoise = AimActionWithNoise(noiseActionSpace, gridSize) specialNoise = backToCrossPointNoise initPrior = [0.5, 0.5] # inferGoalPosterior = InferGoalPosterior(goalPolicy) softmaxBetaList = [5] noise = 0 gamma = 0.9 goalReward = [50, 50] actionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0)] runVI = RunVI(gridSize, actionSpace, noiseActionSpace, noise, gamma, goalReward) for softmaxBeta in softmaxBetaList: # for noise in noiseList: for i in range(20): print(i) numBlocks = 3 expDesignValues = [[b, h, d, m, diff] for b in width for h in height for d in intentionDis for m in decisionSteps for diff in targetDiffs] * numBlocks random.shuffle(expDesignValues) numExpTrial = len(expDesignValues) condition = namedtuple('condition', 'name decisionSteps') expCondition = condition(name='expCondition', decisionSteps=decisionSteps) lineCondition = condition(name='lineCondition', decisionSteps=decisionSteps) conditionList = [expCondition ] * numExpTrial # + [lineCondition] * numExpTrial random.shuffle(conditionList) numNormalTrials = len(conditionList) noiseDesignValues = [0] * numNormalTrials if len(conditionList) != len(noiseDesignValues): raise Exception("unmatch condition design") # deubg # expDesignValues = [specialDesign] * 10 # noiseDesignValues = ['special'] * 10 # conditionList = [expCondition] * 10 # debug isInBoundary = IsInBoundary([0, gridSize - 1], [0, gridSize - 1]) creatRectMap = CreatRectMap(rotateAngles, gridSize, obstaclesMaps, rotatePoint) creatLineMap = CreatLineMap(rotateAngles, gridSize, rotatePoint, isInBoundary) samplePositionFromCondition = SamplePositionFromCondition( creatRectMap, creatLineMap, expDesignValues) modelController = ModelControllerOnline(softmaxBeta) # modelController = AvoidCommitModel(softmaxBeta, actionSpace, checkBoundary) controller = modelController renderOn = 1 normalTrial = NormalTrial(renderOn, controller, drawNewState, drawText, normalNoise, checkBoundary) experimentValues = co.OrderedDict() experimentValues["name"] = "noise" + str( noise) + '_' + "softmaxBeta" + str(softmaxBeta) + '_' + str(i) resultsDirPath = os.path.join( resultsPath, "noise" + str(noise) + '_' + "softmaxBeta" + str(softmaxBeta)) if not os.path.exists(resultsDirPath): os.mkdir(resultsDirPath) writerPath = os.path.join(resultsDirPath, experimentValues["name"] + '.csv') writer = WriteDataFrameToCSV(writerPath) experiment = ObstacleModelSimulation(normalTrial, writer, experimentValues, samplePositionFromCondition, drawImage, resultsPath, runVI) experiment(noiseDesignValues, conditionList)
def main(): picturePath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'results')) machinePolicyPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'machinePolicy')) dataPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'conditionData')) df = pd.read_csv( os.path.join(dataPath, 'DesignConditionForAvoidCommitmentZone.csv')) df['intentionedDisToTargetMin'] = df.apply( lambda x: x['minDis'] - x['avoidCommitmentZone'], axis=1) gridSize = 15 screenWidth = 600 screenHeight = 600 screen = pg.display.set_mode((screenWidth, screenHeight)) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) introductionImage = pg.image.load( os.path.join(picturePath, 'introduction.png')) finishImage = pg.image.load(os.path.join(picturePath, 'finish.png')) introductionImage = pg.transform.scale(introductionImage, (screenWidth, screenHeight)) finishImage = pg.transform.scale( finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawText = DrawText(screen, drawBackground) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) for i in range(20): print(i) width = [3, 4, 5] height = [3, 4, 5] intentionDis = [2, 4, 6] direction = [45, 135, 225, 315] expDesignValues = [[b, h, d] for b in width for h in height for d in intentionDis] numExpTrial = len(expDesignValues) random.shuffle(expDesignValues) expDesignValues.append(random.choice(expDesignValues)) createExpCondition = CreatExpCondition(direction, gridSize) samplePositionFromCondition = SamplePositionFromCondition( df, createExpCondition, expDesignValues) distanceDiffList = [0, 2, 4] minDisList = range(5, 15) intentionedDisToTargetList = [2, 4, 6] rectAreaSize = [6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 36] lineAreaSize = [4, 5, 6, 7, 8, 9, 10] condition = namedtuple( 'condition', 'name areaType distanceDiff minDis areaSize intentionedDisToTarget' ) expCondition = condition( name='expCondition', areaType='rect', distanceDiff=[0], minDis=minDisList, areaSize=rectAreaSize, intentionedDisToTarget=intentionedDisToTargetList) rectCondition = condition( name='controlRect', areaType='rect', distanceDiff=[2, 4], minDis=minDisList, areaSize=rectAreaSize, intentionedDisToTarget=intentionedDisToTargetList) straightLineCondition = condition( name='straightLine', areaType='straightLine', distanceDiff=distanceDiffList, minDis=minDisList, areaSize=lineAreaSize, intentionedDisToTarget=intentionedDisToTargetList) midLineCondition = condition( name='MidLine', areaType='midLine', distanceDiff=distanceDiffList, minDis=minDisList, areaSize=lineAreaSize, intentionedDisToTarget=intentionedDisToTargetList) noAreaCondition = condition( name='noArea', areaType='none', distanceDiff=distanceDiffList, minDis=minDisList, areaSize=[0], intentionedDisToTarget=intentionedDisToTargetList) numControlTrial = int(numExpTrial * 2 / 3) expTrials = [expCondition] * numExpTrial conditionList = list(expTrials + [rectCondition] * numExpTrial + [straightLineCondition] * numControlTrial + [midLineCondition] * numControlTrial + [noAreaCondition] * numControlTrial) random.shuffle(conditionList) numNormalTrials = len(conditionList) conditionList.append(expCondition) noiseCondition = list(permutations([1, 2, 0], 3)) noiseCondition.append((1, 1, 1)) blockNumber = int(numNormalTrials / 3) noiseDesignValues = np.array([ random.choice(noiseCondition) for _ in range(blockNumber) ]).flatten().tolist() noiseDesignValues.append('special') policy = pickle.load( open( os.path.join(machinePolicyPath, "noise0.1WolfToTwoSheepGird15_policy.pkl"), "rb")) softmaxBeta = 2.5 modelController = ModelController(policy, gridSize, softmaxBeta) controller = modelController checkBoundary = CheckBoundary([0, gridSize - 1], [0, gridSize - 1]) noiseActionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)] normalNoise = NormalNoise(noiseActionSpace, gridSize) experimentValues = co.OrderedDict() experimentValues["name"] = "softmaxModel" + str(i) baseLineWriterPath = os.path.join( resultsPath, 'baseLine' + experimentValues["name"] + '.csv') baseLineWriter = WriteDataFrameToCSV(baseLineWriterPath) singleGoalTrial = SingleGoalTrial(controller, drawNewState, drawText, normalNoise, checkBoundary) creatSingleGoalMap = CreatSingleGoalMap(gridSize) singleGoalExperiment = SingleGoalExperiment(singleGoalTrial, baseLineWriter, experimentValues, creatSingleGoalMap) baseLineTrialCondition = [6, 8, 10, 12, 14] numBaseLineTrialBlock = 5 numBaseLineTrial = len(baseLineTrialCondition) * numBaseLineTrialBlock baseLineNoiseDesignValues = np.array([ random.choice(noiseCondition) for _ in range(numBaseLineTrial) ]).flatten().tolist() baseLineConditionList = baseLineTrialCondition * numBaseLineTrialBlock random.shuffle(baseLineConditionList) singleGoalExperiment(baseLineNoiseDesignValues, baseLineConditionList)
def main(): experimentValues = co.OrderedDict() experimentValues["name"] = 'test' # experimentValues["name"] = input("Please enter your name:").capitalize() fullScreen = 1 mouseVisible = False screenWidth = 600 screenHeight = 600 initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() pg.mouse.set_visible(mouseVisible) gridSize = 15 leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) picturePath = os.path.abspath(os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath(os.path.join(os.path.join(os.getcwd(), os.pardir), 'results')) formalTrialImage = pg.image.load(os.path.join(picturePath, 'formalTrial.png')) finishImage = pg.image.load(os.path.join(picturePath, 'finish.png')) restImage = pg.image.load(os.path.join(picturePath, 'rest.png')) formalTrialImage = pg.transform.scale(formalTrialImage, (screenWidth, screenHeight)) restImage = pg.transform.scale(restImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) finishImage = pg.transform.scale(finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawText = DrawText(screen, drawBackground) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) # condition width = [5] height = [5] intentionDis = [2, 3, 4] decisionSteps = [0, 1, 2, 4, 6] targetDiffs = [0, 0, 1, 2] rotateAngles = [0, 90, 180, 270] # obstaclesMapStep obstaclesMapStep0 = [[(3, 2), (4, 2), (5, 3), (6, 3), (7, 4), (1, 3), (2, 4), (2, 5), (3, 6)]] obstaclesMapStep1 = [[(1, 2), (2, 4), (2, 5), (3, 2), (4, 2), (3, 6), (4, 7), (5, 3), (6, 4)]] obstaclesMapStep2 = [[(2, 2), (2, 4), (2, 5), (3, 6), (4, 7), (4, 2), (5, 2), (6, 3), (7, 3)]] obstaclesMapStep4 = [[(3, 3), (4, 1), (1, 4), (5, 1), (1, 5), (5, 3), (6, 3), (3, 5), (3, 6)]] obstaclesMapStep6 = [[(4, 4), (4, 1), (4, 2), (6, 4), (7, 4), (4, 6), (4, 7), (1, 4), (2, 4)]] speicalObstacleMap = [[(4, 1), (4, 2), (6, 3), (6, 4), (1, 4), (2, 4), (3, 6), (4, 6)], [(5, 1), (4, 2), (6, 3), (6, 4), (1, 5), (2, 4), (3, 6), (4, 6)], [(3, 1), (4, 2), (6, 3), (6, 4), (1, 3), (2, 4), (3, 6), (4, 6)]] obstaclesCondition = [obstaclesMapStep0, obstaclesMapStep1, obstaclesMapStep2, obstaclesMapStep4, obstaclesMapStep6] # debug # decisionSteps = [6] # obstaclesCondition = [obstaclesMapStep6] # debug obstaclesMaps = dict(zip(decisionSteps, obstaclesCondition)) numBlocks = 3 expDesignValues = [[b, h, d, m, diff] for b in width for h in height for d in intentionDis for m in decisionSteps for diff in targetDiffs] * numBlocks random.shuffle(expDesignValues) numExpTrial = len(expDesignValues) specialDesign = [5, 5, 4, 10, 0] expDesignValues.append(specialDesign) condition = namedtuple('condition', 'name decisionSteps') expCondition = condition(name='expCondition', decisionSteps=decisionSteps) lineCondition = condition(name='lineCondition', decisionSteps=decisionSteps) # specialCondition = condition(name='specialCondition', decisionSteps=[10]) conditionList = [expCondition] * numExpTrial # + [lineCondition] * numExpTrial # conditionList = [lineCondition] * numExpTrial random.shuffle(conditionList) numNormalTrials = len(conditionList) # numTrialsPerBlock = 3 # noiseCondition = list(permutations([1, 2, 0], numTrialsPerBlock)) + [(1, 1, 1)] # blockNumber = int(numNormalTrials / numTrialsPerBlock) # noiseDesignValues = createNoiseDesignValue(noiseCondition, blockNumber) # conditionList.append(specialCondition) noiseDesignValues = [0] * numNormalTrials # deubg # expDesignValues = [specialDesign] * 10 # noiseDesignValues = ['special'] * 10 # conditionList = [specialCondition] * 10 # debug print('trial:', len(conditionList)) if len(conditionList) != len(noiseDesignValues): raise Exception("unmatch condition design") writerPath = os.path.join(resultsPath, experimentValues["name"] + '.csv') writer = WriteDataFrameToCSV(writerPath) rotatePoint = RotatePoint(gridSize) isInBoundary = IsInBoundary([0, gridSize - 1], [0, gridSize - 1]) creatRectMap = CreatRectMap(rotateAngles, gridSize, obstaclesMaps, rotatePoint) creatLineMap = CreatLineMap(rotateAngles, gridSize, rotatePoint, isInBoundary) samplePositionFromCondition = SamplePositionFromCondition(creatRectMap, creatLineMap, expDesignValues) pygameActionDict = {pg.K_UP: (0, -1), pg.K_DOWN: (0, 1), pg.K_LEFT: (-1, 0), pg.K_RIGHT: (1, 0)} humanController = HumanController(pygameActionDict) controller = humanController checkBoundary = CheckBoundary([0, gridSize - 1], [0, gridSize - 1]) noiseActionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)] # noiseActionSpace = [(0, 0)] normalNoise = AimActionWithNoise(noiseActionSpace, gridSize) specialNoise = backToCrossPointNoise normalTrial = NormalTrial(controller, drawNewState, drawText, normalNoise, checkBoundary) restTrialInterval = math.ceil(numNormalTrials / 4) restTrial = list(range(restTrialInterval, numNormalTrials, restTrialInterval)) experiment = ObstacleExperiment(normalTrial, writer, experimentValues, samplePositionFromCondition, drawImage, resultsPath, restTrial, restImage) # start exp drawImage(formalTrialImage) experiment(noiseDesignValues, conditionList) drawImage(finishImage)
def main(): gridSize = 60 bounds = [0, 0, gridSize - 1, gridSize - 1] minDistanceForReborn = 5 condition = [-5, -3, -1, 0, 1, 3, 5] counter = [0] * len(condition) numPlayers = 2 initialWorld = InitialWorld(bounds, numPlayers, minDistanceForReborn) updateWorld = UpdateWorld(bounds, condition, counter, minDistanceForReborn) screenWidth = 800 screenHeight = 800 screenCenter = [screenWidth / 2, screenHeight / 2] fullScreen = False initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() leaveEdgeSpace = 6 lineWidth = 1 backgroundColor = THECOLORS['grey'] # [205, 255, 204] lineColor = [0, 0, 0] targetColor = [ THECOLORS['blue'], (0, 0, 128), (0, 168, 107), (0, 168, 107) ] # [255, 50, 50] playerColors = [THECOLORS['orange'], THECOLORS['red']] targetRadius = 10 playerRadius = 10 totalBarLength = 100 barHeight = 20 stopwatchUnit = 100 finishTime = 1000 * 60 * 2 block = 1 softmaxBeita = -1 textColorTuple = THECOLORS['green'] stopwatchEvent = pg.USEREVENT + 1 saveImage = False killzone = 2 wolfSpeedRatio = 1 pg.time.set_timer(stopwatchEvent, stopwatchUnit) pg.event.set_allowed([pg.KEYDOWN, pg.QUIT, stopwatchEvent]) pg.key.set_repeat(120, 120) picturePath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'results')) experimentValues = co.OrderedDict() # experimentValues["name"] = input("Please enter your name:").capitalize() experimentValues["name"] = 'kill' + str(killzone) experimentValues["condition"] = 'all' writerPath = os.path.join(resultsPath, experimentValues["name"]) + '.csv' writer = WriteDataFrameToCSV(writerPath) introductionImage = pg.image.load( os.path.join(picturePath, 'introduction.png')) restImage = pg.image.load(os.path.join(picturePath, 'rest.png')) finishImage = pg.image.load(os.path.join(picturePath, 'finish.png')) introductionImage = pg.transform.scale(introductionImage, (screenWidth, screenHeight)) finishImage = pg.transform.scale( finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple, playerColors) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColors, targetRadius, playerRadius) drawImage = DrawImage(screen) drawAttributionTrail = DrawAttributionTrail(screen, playerColors, totalBarLength, barHeight, screenCenter) saveImageDir = os.path.join( os.path.join(os.path.abspath(os.path.join(os.getcwd(), os.pardir)), 'data'), experimentValues["name"]) xBoundary = [bounds[0], bounds[2]] yBoundary = [bounds[1], bounds[3]] stayInBoundary = StayInBoundary(xBoundary, yBoundary) ############ actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7)] preyPowerRatio = 3 sheepActionSpace = list(map(tuple, np.array(actionSpace) * preyPowerRatio)) sheepActionSpace.append((0, 0)) numActionSpace = len(sheepActionSpace) actionSpaceStill = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7)] sheepActionSpaceStill = list( map(tuple, np.array(actionSpaceStill) * preyPowerRatio)) sheepActionSpaceStill.append((0, 0)) numActionSpaceStill = len(sheepActionSpaceStill) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' depth = 5 generateSheepModelSingle = GenerateModel(4, numActionSpace, regularizationFactor) generateSheepModelMulti = GenerateModel(6, numActionSpaceStill, regularizationFactor) initSheepNNModelSingle = generateSheepModelSingle( sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) initSheepNNModelMulti = generateSheepModelMulti( sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepPreTrainModelPathSingle = os.path.join( '..', 'trainedModelsSingle', 'agentId=0_dataSize=5000_depth=5_learningRate=0.0001_maxRunningSteps=150_miniBatchSize=256_numSimulations=100_sampleOneStepPerTraj=0_trainSteps=50000' ) sheepPreTrainModelPathMulti = os.path.join( '..', 'trainedModelsMulti', 'agentId=0_depth=5_learningRate=0.0001_maxRunningSteps=150_miniBatchSize=256_numSimulations=200_trainSteps=50000' ) sheepPreTrainModelSingle = restoreVariables(initSheepNNModelSingle, sheepPreTrainModelPathSingle) sheepPreTrainModelMulti = restoreVariables(initSheepNNModelMulti, sheepPreTrainModelPathMulti) sheepPolicySingleModel = ApproximatePolicy(sheepPreTrainModelSingle, sheepActionSpace) sheepPolicyMulti = ApproximatePolicy(sheepPreTrainModelMulti, sheepActionSpaceStill) from src.sheepPolicy import SingleChasingPolicy, inferNearestWolf, ComputeLikelihoodByHeatSeeking, InferCurrentWolf, BeliefPolicy sheepPolicySingle = SingleChasingPolicy(sheepPolicySingleModel, inferNearestWolf) baseProb = 0.5 assumePrecision = 50 computeLikelihoodByHeatSeeking = ComputeLikelihoodByHeatSeeking( baseProb, assumePrecision) inferCurrentWolf = InferCurrentWolf(computeLikelihoodByHeatSeeking) beliefPolicy = BeliefPolicy(sheepPolicySingle, sheepPolicySingleModel, sheepPolicyMulti, inferCurrentWolf) # sheepPolicySingle = sheepPolicySingleModel # ## mcts sheep # from mcts import sheepMCTS # sheepPolicy = sheepMCTS() checkTerminationOfTrial = CheckTerminationOfTrial(finishTime) checkEaten = CheckEaten(killzone, isAnyKilled) totalScore = 10 attributionTrail = AttributionTrail(totalScore, saveImageDir, saveImage, drawAttributionTrail) # sheepPolicy = [sheepPolicySingle,sheepPolicyMulti] softMaxBeta = 30 softmaxAction = SoftmaxAction(softMaxBeta) humanController = HumanController(writer, gridSize, stopwatchEvent, stopwatchUnit, wolfSpeedRatio, drawNewState, finishTime, stayInBoundary, saveImage, saveImageDir, beliefPolicy, chooseGreedyAction) # policy = pickle.load(open("SingleWolfTwoSheepsGrid15.pkl","rb")) # modelController = ModelController(policy, gridSize, stopwatchEvent, stopwatchUnit, drawNewState, finishTime, softmaxBeita) actionSpace = list(it.product([0, 1, -1], repeat=2)) trial = Trial(actionSpace, killzone, stopwatchEvent, drawNewState, checkTerminationOfTrial, checkEaten, attributionTrail, humanController) experiment = Experiment(trial, writer, experimentValues, initialWorld, updateWorld, drawImage, resultsPath) giveExperimentFeedback = GiveExperimentFeedback(screen, textColorTuple, screenWidth, screenHeight) # drawImage(introductionImage) score = [0] * block for i in range(block): score[i] = experiment(finishTime) giveExperimentFeedback(i, score) if i == block - 1: drawImage(finishImage) # else: # drawImage(restImage) participantsScore = np.sum(np.array(score)) print(participantsScore)
screen = pygame.display.set_mode((screenWidth, screenHeight)) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) drawBackground = DrawBackground(screen, dimension, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) creatStraightLineCondition = CreatStraightLineCondition( direction, dimension) width, height, distance, distanceDiff = [2, 2, 2, 0] target1, target2, playerGrid = creatStraightLineCondition( width, height, distance, distanceDiff) import pandas as pd df = pd.DataFrame(columns=('playerGrid', 'target1', 'target2')) coordinations = tuple( it.product(range(1, dimension - 1), range(1, dimension - 1))) stateAll = list(it.combinations(coordinations, 3)) # print(len(stateAll)) # condition = []
def main(): picturePath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'pictures')) resultsPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'results')) machinePolicyPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'machinePolicy')) dataPath = os.path.abspath( os.path.join(os.path.join(os.getcwd(), os.pardir), 'conditionData')) df = pd.read_csv( os.path.join(dataPath, 'DesignConditionForAvoidCommitmentZone.csv')) df['intentionedDisToTargetMin'] = df.apply( lambda x: x['minDis'] - x['avoidCommitmentZone'], axis=1) gridSize = 15 screenWidth = 600 screenHeight = 600 fullScreen = False renderOn = False initializeScreen = InitializeScreen(screenWidth, screenHeight, fullScreen) screen = initializeScreen() pg.mouse.set_visible(False) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) introductionImage = pg.image.load( os.path.join(picturePath, 'introduction.png')) finishImage = pg.image.load(os.path.join(picturePath, 'finish.png')) introductionImage = pg.transform.scale(introductionImage, (screenWidth, screenHeight)) finishImage = pg.transform.scale( finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, gridSize, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawText = DrawText(screen, drawBackground) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) # condition width = [5] height = [5] intentionDis = [3, 4, 5] decisionSteps = [2, 4, 6, 10] targetDiffs = [0, 2, 4] rotateAngles = [0, 90, 180, 270] obstaclesMap1 = [(2, 2), (2, 4), (2, 5), (2, 6), (4, 2), (5, 2), (6, 2)] obstaclesMap2 = [(3, 3), (4, 1), (1, 4), (5, 3), (3, 5), (6, 3), (3, 6)] obstaclesMap3 = [(4, 4), (4, 1), (4, 2), (6, 4), (4, 6), (1, 4), (2, 4)] speicalObstacleMap = [(4, 1), (4, 2), (6, 3), (6, 4), (1, 4), (2, 4), (3, 6), (4, 6)] obstaclesCondition = [ obstaclesMap1, obstaclesMap2, obstaclesMap3, speicalObstacleMap ] obstaclesMaps = dict(zip(decisionSteps, obstaclesCondition)) rotatePoint = RotatePoint(gridSize) checkBoundary = CheckBoundary([0, gridSize - 1], [0, gridSize - 1]) noiseActionSpace = [(0, -1), (0, 1), (-1, 0), (1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)] normalNoise = AimActionWithNoise(noiseActionSpace, gridSize) specialNoise = backToCrossPointNoise initPrior = [0.5, 0.5] # inferGoalPosterior = InferGoalPosterior(goalPolicy) softmaxBetaList = [6] noiseList = [0] # noise = 0.067 # for softmaxBeta in softmaxBetaList: softmaxBeta = 6 for noise in noiseList: for i in range(20): print(i) numBlocks = 5 expDesignValues = [[b, h, d, m, diff] for b in width for h in height for d in intentionDis for m in decisionSteps for diff in targetDiffs] * numBlocks random.shuffle(expDesignValues) numExpTrial = len(expDesignValues) specialDesign = [5, 5, 4, 10, 0] expDesignValues.append(specialDesign) condition = namedtuple('condition', 'name decisionSteps') expCondition = condition(name='expCondition', decisionSteps=decisionSteps[:-1]) lineCondition = condition(name='lineCondition', decisionSteps=decisionSteps[:-1]) specialCondition = condition(name='specialCondition', decisionSteps=[10]) numControlTrial = int(numExpTrial / 2) conditionList = [expCondition] * numControlTrial + [ lineCondition ] * numControlTrial conditionList = [lineCondition] * numControlTrial random.shuffle(conditionList) numNormalTrials = len(conditionList) numTrialsPerBlock = 3 noiseCondition = list(permutations([1, 2, 0], numTrialsPerBlock)) noiseCondition.append((1, 1, 1)) blockNumber = int(numNormalTrials / numTrialsPerBlock) noiseDesignValues = createNoiseDesignValue(noiseCondition, blockNumber) conditionList.append(specialCondition) if noise == 0: noiseDesignValues = [0] * len(conditionList) if len(conditionList) != len(noiseDesignValues): raise Exception("unmatch condition design") # deubg # expDesignValues = [specialDesign] * 10 # noiseDesignValues = ['special'] * 10 # conditionList = [expCondition] * 10 # debug isInBoundary = IsInBoundary([0, gridSize - 1], [0, gridSize - 1]) creatRectMap = CreatRectMap(rotateAngles, gridSize, obstaclesMaps, rotatePoint) creatLineMap = CreatLineMap(rotateAngles, gridSize, rotatePoint, isInBoundary) samplePositionFromCondition = SamplePositionFromCondition( creatRectMap, creatLineMap, expDesignValues) runVI = RunVI(gridSize, noise, noiseActionSpace) modelController = ModelControllerOnline(softmaxBeta, runVI) controller = modelController renderOn = 0 normalTrial = NormalTrial(renderOn, controller, drawNewState, drawText, normalNoise, checkBoundary) specialTrial = SpecialTrial(renderOn, controller, drawNewState, drawText, specialNoise, checkBoundary) experimentValues = co.OrderedDict() experimentValues["name"] = "noise" + str( noise) + '_' + "softmaxBeta" + str(softmaxBeta) + '_' + str(i) writerPath = os.path.join(resultsPath, experimentValues["name"] + '.csv') writer = WriteDataFrameToCSV(writerPath) experiment = ObstacleExperiment(normalTrial, specialTrial, writer, experimentValues, samplePositionFromCondition, drawImage, resultsPath) experiment(noiseDesignValues, conditionList)