def main(): args = parse_args() set_seed(args.seed) env = gym.envs.make(args.env_id) net = get_net(env) approximator = Approximator(net, alpha=args.alpha, loss=nn.MSELoss) get_eps = get_get_epsilon(args.it_at_min, args.min_epsilon) train(approximator, env, get_epsilon=get_eps, **vars(args))
canvasSize = 800 ## config parameters # whether or not to display point-cloud disp_cloud = False # tracker TRACKING = True # write frames to file WRITE_TO_FILE = False OUT_DIR = 'tmp/vr3dense_demo' # main function if __name__ == "__main__": # parse arguments args = parse_args() # create an instance of tracker mot_tracker = AB3DMOT(max_age=2, min_hits=2) # experiment string exp_id = 'None' if args.exp_id != '': exp_id = args.exp_id exp_str = 'vr3d.learning_rate_{}.n_xgrids_{}.n_ygrids_{}.xlim_{}_{}.ylim_{}_{}.zlim_{}_{}.max_depth_{}.vol_size_{}x{}x{}.img_size_{}x{}.dense_depth_{}.concat_latent_vector_{}.exp_id_{}'.format( args.learning_rate, args.n_xgrids, args.n_ygrids, args.xmin, args.xmax, args.ymin, args.ymax, \ args.zmin, args.zmax, args.max_depth, args.vol_size_x, args.vol_size_y, args.vol_size_z, args.img_size_x, \ args.img_size_y, args.dense_depth, args.concat_latent_vector, exp_id) # define model obj_label_len = len(pose_fields) + len(
import sys import src as app if __name__ == '__main__': initial_time, range_days, companies = app.parse_args(sys.argv[1:]) allowed_times = app.get_weekdays_for_scheduling(range_days, initial_time) schedule = app.scheduler(companies, allowed_times) for s in schedule: print("{}\n".format(s))