def main(): # STEP 1: Parse args args = get_arguments(sys.argv[1:]) # STEP 2: Get a list of CSV objects. csv_list = get_csv_list(args) # STEP 3: Create a Plotter and generate plot(s) if args.indiv: generate_individual_plots(args, csv_list) else: plot = Plotter(args, csv_list) plot.generate_plot()
def protein_length_graphic(paths_dict, height, width, font_scale): height = int(height.get()) width = int(width.get()) font_scale = float(font_scale.get()) savepath = paths_dict[SAVEPATH] prot_index = 0 if len(protein_listbox1.curselection()) > 0: prot_index = protein_listbox1.curselection()[0] else: raise Exception("At least one protein must be selected") prot_name = protein_listbox1.get(prot_index) facade.protein_length_graphic(prot_name, savepath, height, width, font_scale, sys.stderr) protein_size_tif = plotter.get_protein_size_tif(savepath, prot_name) _show_image(protein_size_tif, height, width, 1200, 800) displayedText.set('Protein plot done!!') return
def __init__(self): self.limit = -1 self.fingerprint_loaded = False self.Decoder = Decoder.Decoder() self.FingerPrinter = FingerPrinter.FingerPrinter() self.Recognizer = Recognizer.Recognizer() self.HashingManager = HashingManager.HashingManager() self.Plotter = Plotter.Plotter() self.MicRecorder = MicRecorder.MicRecorder()
def generate_individual_plots(args, csv_list): args.dir = None xaxis = args.xaxis if args.xaxis else None xmin = Plotter.get_x_min(csv_list, xaxis) xmax = Plotter.get_x_max(csv_list, xaxis) ymin = Plotter.get_y_min(csv_list, xaxis) + args.offset ymax = Plotter.get_y_max(csv_list, xaxis) + args.offset for csv in csv_list: args.file = csv.fname plot = Plotter(args, [csv], xmin, xmax, ymin, ymax) plot.generate_plot()
def stripplot (paths_dict, height, width): height = int(height.get()) width = int(width.get()) savepath = paths_dict[SAVEPATH] facade.stripplot(savepath, height, width, sys.stderr) blast_plot_tif = plotter.get_blast_plot_tif(savepath) _show_image(blast_plot_tif, height, width, 1200, 600) return
def heatmap(paths_dict, height, width, font_scale, right_scale, bottom_scale): height = int(height.get()) width = int(width.get()) font_scale = float(font_scale.get()) bottom_scale = float(bottom_scale.get()) right_scale = float(right_scale.get()) savepath = paths_dict[SAVEPATH] facade.heatmap(savepath, height, width, font_scale, right_scale, bottom_scale, sys.stderr) clustermap = plotter.get_cluster_map_tif(savepath) _show_image(clustermap, height, width, 1200, 800) return
from src import Plotter # prepare the video input stream vc = cv2.VideoCapture('./data/Surgery.avi') # read the first frame of the video stream _, frameReference = vc.read() count = 0 plt.ion() fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 5)) plt.axis('off') segmentation = False # instantiate the Tracker with the segmentation option tracker = Tracker.Tracker(segmentation) plotter = Plotter.Plotter() start = datetime.datetime.now() while vc.isOpened(): time1 = datetime.datetime.now() # grab the next frame _, frameNew = vc.read() if frameNew is None: end = datetime.datetime.now() print("finishing...") break assert frameReference.shape == frameNew.shape # extract the keypoints and match them according to their descriptors
def test_plotter_arg_filename(self): args = get_arguments(['-d', 'ex*/my*', '-c', 'hunger', '-I']) csv_list = get_csv_list(args) plot = Plotter(args, csv_list) self.assertEqual(plot.arg['name'], 'my_examples.png')
def test_plotter_default_name_dir(self): args = get_arguments(['-d', 'ex*/my*', '-c', 'hunger', '-n', 'pet_hunger']) csv_list = get_csv_list(args) plot = Plotter(args, csv_list) self.assertEqual(plot.arg['name'], 'pet_hunger.html')
lr.XY_AVERAGE, lr.XY_WEIGHTED_AVERAGE, ] SVM_LIST_COMP1 = [lr.MOVEMENT, lr.XY_MOVEMENT] SVM_LIST_COMP2 = [ lr.MOVEMENT, lr.ALL_MAJORITY, lr.ALL_AVERAGE, lr.ALL_WEIGHTED_AVERAGE ] TO_DO_TOGHETER = [(SVM_LIST_NOSHIFT, "setnoshift"), (SVM_LIST_SHIFT, "setshift"), (SVM_LIST_COMP1, "origshift"), (SVM_LIST_COMP2, "setall")] # todo: ottimizza evitando la ripetizione di calcoli if __name__ == '__main__': p = plotter.Plotter(Utils.DATASET_NAME_0) for handwriting in [Utils.ITALIC, Utils.BLOCK_LETTER]: classifier = lr.WordClassifier(Utils.DATASET_NAME_0, handwriting) chrono = cr.Chrono("Generating verification outputs...") ver = VerificationEvaluator(classifier) for balanced in [True, False]: names, fprs, tprs, ts, aucs = ver.plots_info_weights( lr.WEIGHTED_AVERAGE, balanced, np.arange(0, 1.01, 0.2)) p.plotRocs(names, fprs, tprs, aucs, handwriting, balanced, "weights") for svm_list, name in TO_DO_TOGHETER: names, fprs, tprs, ts, aucs = ver.plots_info_names( svm_list, balanced)
from src.GeneticAlgorythm import * from src.Plotter import * import time import numpy as np if __name__ == "__main__": methods = [ "RankSelection", "RankSelectionDependentOnIteration", "RouletteSelection", "TournamentSelection" ] iterCount = 1000 plt = Plotter() meanPlt = Plotter() crossOverPlt = Plotter() mutatePlt = Plotter() bestIndividualsPlt = Plotter() crossPlot = Plotter() mutatePlot = Plotter() for method in methods: print() print('Metoda : ', method) print() #zbierznosici funkcji celu i najlepsze osobniki popular = [ 1.0, 2.0, 2.14, 3.6, 11.23, 23.51, 17.2, 12.3, 19.2, 7.7, 21.3, 32.7, 29.9, 30.5, 35.4 ] # popular=[3,11,15,23,27,33,41,49,56,59,70,90] popular.sort() alg = GeneticAlgorythm(20,