def benchmark_on_image(run_name, folder, image_name, image, methods): def printscore(header, val1, val2, val3, val4): print( f"{header}: \t {val1:.4f} \t {val2:.4f} \t {val3:.4f} \t {val4:.4f}" ) image = normalise(image.astype(numpy.float32)) gt_numpy_filepath = join(join(folder, 'gt_numpy'), f'{image_name}' + '.npy') numpy.save(gt_numpy_filepath, image) blurred_image, psf_kernel = add_microscope_blur_2d( image, multi_channel=image.ndim == 3) noisy_blurred_image = add_poisson_gaussian_noise(blurred_image, alpha=0.001, sigma=0.1, sap=0.01, quant_bits=10) blurrynoisy_numpy_filepath = join(join(folder, 'blurrynoisy_numpy'), f'{image_name}' + '.npy') numpy.save(blurrynoisy_numpy_filepath, noisy_blurred_image) blurry_filepath = join(join(folder, 'blurry'), image_name) save_png(blurry_filepath, blurred_image) blurrynoisy_filepath = join(join(folder, 'blurrynoisy'), image_name) save_png(blurrynoisy_filepath, noisy_blurred_image) method_names = [method.__name__ for method in methods] # We restore the images with all methods: restored_image_list = [] with open(join(folder, f"timming_{run_name}.tsv"), "a") as timming_file: for restore in methods: restored_cached_filepath = join( join(folder, 'restored_cache_numpy'), f'{run_name}_{restore.__name__}_' + image_name + '.npy') if exists(restored_cached_filepath): print( f"File: {restored_cached_filepath} does exists: skipping restoration." ) restored_image = numpy.load(restored_cached_filepath) else: print( f"File: {restored_cached_filepath} does not exists, restoration started." ) restored_image, train_time, inf_time = restore( noisy_blurred_image, psf_kernel) numpy.save(restored_cached_filepath, restored_image) timming_file.write( f"{image_name}\t{restore.__name__}\t{train_time}\t{inf_time}\n" ) restored_image_list.append(restored_image) restored_filepath = join( join(folder, 'restored'), f'{run_name}_{restore.__name__}_' + image_name) save_png(restored_filepath, restored_image) # We compute scores: with open(join(folder, f"scores_{run_name}.tsv"), "a") as scores_file: blurred_psnr_value = psnr(image, blurred_image) blurred_ssim_value = ssim(image, blurred_image) blurred_mi_value = mutual_information(image, blurred_image) blurred_smi_value = spectral_mutual_information(image, blurred_image) noisy_blurred_psnr_value = psnr(image, noisy_blurred_image) noisy_blurred_ssim_value = ssim(image, noisy_blurred_image) noisy_blurred_mi_value = mutual_information(image, noisy_blurred_image) noisy_blurred_smi_value = spectral_mutual_information( image, noisy_blurred_image) scores_file.write( f"{image_name}\tblurry\t{blurred_psnr_value}\t{blurred_ssim_value}\t{blurred_mi_value}\t{blurred_smi_value}\n" ) scores_file.write( f"{image_name}\tnoisy&blurred\t{noisy_blurred_psnr_value}\t{noisy_blurred_ssim_value}\t{noisy_blurred_mi_value}\t{noisy_blurred_smi_value}\n" ) print( "Below in order: PSNR, norm spectral mutual info, norm mutual info, SSIM: " ) printscore( "blurry image \t\t: ", blurred_psnr_value, blurred_ssim_value, blurred_mi_value, blurred_smi_value, ) printscore( "noisy and blurry image \t\t: ", noisy_blurred_psnr_value, noisy_blurred_ssim_value, noisy_blurred_mi_value, noisy_blurred_smi_value, ) for restore in methods: restored_filepath = join( join(folder, 'restored_cache_numpy'), f'{run_name}_{restore.__name__}_' + image_name + '.npy') restored_image = numpy.load(restored_filepath) psnr_value = psnr(image, restored_image) ssim_value = ssim(image, restored_image) mi_value = mutual_information(image, restored_image) smi_value = spectral_mutual_information(image, restored_image) printscore(f"restored with {restore.__name__} \t\t: ", psnr_value, ssim_value, mi_value, smi_value) scores_file.write( f"{image_name}\t{restore.__name__}\t{psnr_value}\t{ssim_value}\t{mi_value}\t{smi_value}\n" )
def demo(image_clipped): image_clipped = normalise(image_clipped.astype(numpy.float32)) blurred_image, psf_kernel = add_microscope_blur_2d(image_clipped) # noisy_blurred_image = add_noise(blurred_image, intensity=None, variance=0.01, sap=0.01, clip=True) noisy_blurred_image = add_poisson_gaussian_noise(blurred_image, alpha=0.001, sigma=0.1, sap=0.01, quant_bits=10) for i in range(10): it_deconv = SSIDeconvolution( max_epochs=3000, patience=300, batch_size=8, learning_rate=0.01, normaliser_type='identity', psf_kernel=psf_kernel, model_class=UNet, masking=True, masking_density=0.01, loss='l2', ) start = time.time() it_deconv.train(noisy_blurred_image) stop = time.time() print(f"Training: elapsed time: {stop - start} ") start = time.time() deconvolved_image = it_deconv.translate(noisy_blurred_image) stop = time.time() print(f"inference: elapsed time: {stop - start} ") image_clipped = numpy.clip(image_clipped, 0, 1) deconvolved_image_clipped = numpy.clip(deconvolved_image, 0, 1) printscore( "ssi deconv : ", psnr(image_clipped, deconvolved_image_clipped), spectral_mutual_information(image_clipped, deconvolved_image_clipped), mutual_information(image_clipped, deconvolved_image_clipped), ssim(image_clipped, deconvolved_image_clipped), ) print( "NOTE: if you get a bad results for ssi, blame stochastic optimisation and retry..." ) print( " The training is done on the same exact image that we infer on, very few pixels..." ) print(" Training should be more stable given more data...") folder = Path(".") / f"{str(i)}" folder.mkdir(exist_ok=True) #imwrite(str(fo'image2d.tif',image) #imwrite('blurred2d.tif', blurred_image) imwrite(str(folder / 'noisyblurred.tif'), noisy_blurred_image) #imwrite('lr_deconvolved_image_2.tif',lr_deconvolved_image_2_clipped) #imwrite('lr_deconvolved_image_5.tif',lr_deconvolved_image_5_clipped) #imwrite('lr_deconvolved_image_10.tif',lr_deconvolved_image_10_clipped) #imwrite('lr_deconvolved_image_20.tif',lr_deconvolved_image_20_clipped) imwrite(str(folder / 'ssi_deconvolved_clipped_image.tif'), deconvolved_image_clipped) imwrite(str(folder / 'ssi_deconvolved_image.tif'), deconvolved_image)
def demo(image_clipped): image_clipped = normalise(image_clipped.astype(numpy.float32)) blurred_image, psf_kernel = add_microscope_blur_3d(image_clipped) noisy_blurred_image = add_poisson_gaussian_noise(blurred_image, alpha=0.001, sigma=0.1, sap=0.01, quant_bits=10) lr = ImageTranslatorLRDeconv(psf_kernel=psf_kernel, backend="cupy") lr.train(noisy_blurred_image) # lr.max_num_iterations=2 # lr_deconvolved_image_2 = lr.translate(noisy_blurred_image) lr.max_num_iterations = 5 lr_deconvolved_image_5 = lr.translate(noisy_blurred_image) # lr.max_num_iterations=10 # lr_deconvolved_image_10 = lr.translate(noisy_blurred_image) # lr.max_num_iterations=20 # lr_deconvolved_image_20 = lr.translate(noisy_blurred_image) it_deconv = SSIDeconvolution( max_epochs=3000, patience=300, batch_size=8, learning_rate=0.01, normaliser_type="identity", psf_kernel=psf_kernel, model_class=UNet, masking=True, masking_density=0.01, loss="l2", ) start = time.time() it_deconv.train(noisy_blurred_image) stop = time.time() print(f"Training: elapsed time: {stop - start} ") start = time.time() deconvolved_image = it_deconv.translate(noisy_blurred_image) stop = time.time() print(f"inference: elapsed time: {stop - start} ") image_clipped = numpy.clip(image_clipped, 0, 1) # lr_deconvolved_image_2_clipped = numpy.clip(lr_deconvolved_image_2, 0, 1) lr_deconvolved_image_5_clipped = numpy.clip(lr_deconvolved_image_5, 0, 1) # lr_deconvolved_image_10_clipped = numpy.clip(lr_deconvolved_image_10, 0, 1) # lr_deconvolved_image_20_clipped = numpy.clip(lr_deconvolved_image_20, 0, 1) deconvolved_image_clipped = numpy.clip(deconvolved_image, 0, 1) columns = ["PSNR", "norm spectral mutual info", "norm mutual info", "SSIM"] print_header(columns) print_score( "blurry image", psnr(image_clipped, blurred_image), spectral_mutual_information(image_clipped, blurred_image), mutual_information(image_clipped, blurred_image), ssim(image_clipped, blurred_image), ) print_score( "noisy and blurry image", psnr(image_clipped, noisy_blurred_image), spectral_mutual_information(image_clipped, noisy_blurred_image), mutual_information(image_clipped, noisy_blurred_image), ssim(image_clipped, noisy_blurred_image), ) # print_score( # "lr deconv (n=2)", # psnr(image_clipped, lr_deconvolved_image_2_clipped), # spectral_mutual_information(image_clipped, lr_deconvolved_image_2_clipped), # mutual_information(image_clipped, lr_deconvolved_image_2_clipped), # ssim(image_clipped, lr_deconvolved_image_2_clipped), # ) print_score( "lr deconv (n=5)", psnr(image_clipped, lr_deconvolved_image_5_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_5_clipped), mutual_information(image_clipped, lr_deconvolved_image_5_clipped), ssim(image_clipped, lr_deconvolved_image_5_clipped), ) # print_score( # "lr deconv (n=10)", # psnr(image_clipped, lr_deconvolved_image_10_clipped), # spectral_mutual_information(image_clipped, lr_deconvolved_image_10_clipped), # mutual_information(image_clipped, lr_deconvolved_image_10_clipped), # ssim(image_clipped, lr_deconvolved_image_10_clipped), # ) # # print_score( # "lr deconv (n=20)", # psnr(image_clipped, lr_deconvolved_image_20_clipped), # spectral_mutual_information(image_clipped, lr_deconvolved_image_20_clipped), # mutual_information(image_clipped, lr_deconvolved_image_20_clipped), # ssim(image_clipped, lr_deconvolved_image_20_clipped), # ) print_score( "ssi deconv", psnr(image_clipped, deconvolved_image_clipped), spectral_mutual_information(image_clipped, deconvolved_image_clipped), mutual_information(image_clipped, deconvolved_image_clipped), ssim(image_clipped, deconvolved_image_clipped), ) print( "NOTE: if you get a bad results for ssi, blame stochastic optimisation and retry..." ) print( " The training is done on the same exact image that we infer on, very few pixels..." ) print(" Training should be more stable given more data...") if use_napari: with napari.gui_qt(): viewer = napari.Viewer() viewer.add_image(image_clipped, name="image") viewer.add_image(blurred_image, name="blurred") viewer.add_image(noisy_blurred_image, name="noisy_blurred_image") # viewer.add_image(lr_deconvolved_image_2_clipped, name='lr_deconvolved_image_2') viewer.add_image(lr_deconvolved_image_5_clipped, name="lr_deconvolved_image_5") # viewer.add_image(lr_deconvolved_image_10_clipped, name='lr_deconvolved_image_10') # viewer.add_image(lr_deconvolved_image_20_clipped, name='lr_deconvolved_image_20') viewer.add_image(deconvolved_image_clipped, name="ssi_deconvolved_image")
def demo(image_clipped): image_clipped = normalise(image_clipped.astype(numpy.float32)) blurred_image, psf_kernel = add_microscope_blur_2d(image_clipped) # noisy_blurred_image = add_noise(blurred_image, intensity=None, variance=0.01, sap=0.01, clip=True) noisy_blurred_image = add_poisson_gaussian_noise(blurred_image, alpha=0.001, sigma=0.1, sap=0.01, quant_bits=10) lr = ImageTranslatorLRDeconv(psf_kernel=psf_kernel, backend="cupy") lr.train(noisy_blurred_image) lr.max_num_iterations = 2 lr_deconvolved_image_2 = lr.translate(noisy_blurred_image) lr.max_num_iterations = 5 lr_deconvolved_image_5 = lr.translate(noisy_blurred_image) lr.max_num_iterations = 10 lr_deconvolved_image_10 = lr.translate(noisy_blurred_image) lr.max_num_iterations = 20 lr_deconvolved_image_20 = lr.translate(noisy_blurred_image) it_deconv = SSIDeconvolution( max_epochs=3000, patience=300, batch_size=8, learning_rate=0.01, normaliser_type='identity', psf_kernel=psf_kernel, model_class=UNet, masking=True, masking_density=0.01, loss='l2', ) start = time.time() it_deconv.train(noisy_blurred_image) stop = time.time() print(f"Training: elapsed time: {stop - start} ") start = time.time() deconvolved_image = it_deconv.translate(noisy_blurred_image) stop = time.time() print(f"inference: elapsed time: {stop - start} ") image_clipped = numpy.clip(image_clipped, 0, 1) lr_deconvolved_image_2_clipped = numpy.clip(lr_deconvolved_image_2, 0, 1) lr_deconvolved_image_5_clipped = numpy.clip(lr_deconvolved_image_5, 0, 1) lr_deconvolved_image_10_clipped = numpy.clip(lr_deconvolved_image_10, 0, 1) lr_deconvolved_image_20_clipped = numpy.clip(lr_deconvolved_image_20, 0, 1) deconvolved_image_clipped = numpy.clip(deconvolved_image, 0, 1) print( "Below in order: PSNR, norm spectral mutual info, norm mutual info, SSIM: " ) printscore( "blurry image : ", psnr(image_clipped, blurred_image), spectral_mutual_information(image_clipped, blurred_image), mutual_information(image_clipped, blurred_image), ssim(image_clipped, blurred_image), ) printscore( "noisy and blurry image: ", psnr(image_clipped, noisy_blurred_image), spectral_mutual_information(image_clipped, noisy_blurred_image), mutual_information(image_clipped, noisy_blurred_image), ssim(image_clipped, noisy_blurred_image), ) printscore( "lr deconv (n=2) : ", psnr(image_clipped, lr_deconvolved_image_2_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_2_clipped), mutual_information(image_clipped, lr_deconvolved_image_2_clipped), ssim(image_clipped, lr_deconvolved_image_2_clipped), ) printscore( "lr deconv (n=5) : ", psnr(image_clipped, lr_deconvolved_image_5_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_5_clipped), mutual_information(image_clipped, lr_deconvolved_image_5_clipped), ssim(image_clipped, lr_deconvolved_image_5_clipped), ) printscore( "lr deconv (n=10) : ", psnr(image_clipped, lr_deconvolved_image_10_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_10_clipped), mutual_information(image_clipped, lr_deconvolved_image_10_clipped), ssim(image_clipped, lr_deconvolved_image_10_clipped), ) printscore( "lr deconv (n=20) : ", psnr(image_clipped, lr_deconvolved_image_20_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_20_clipped), mutual_information(image_clipped, lr_deconvolved_image_20_clipped), ssim(image_clipped, lr_deconvolved_image_20_clipped), ) printscore( "ssi deconv : ", psnr(image_clipped, deconvolved_image_clipped), spectral_mutual_information(image_clipped, deconvolved_image_clipped), mutual_information(image_clipped, deconvolved_image_clipped), ssim(image_clipped, deconvolved_image_clipped), ) print( "NOTE: if you get a bad results for ssi, blame stochastic optimisation and retry..." ) print( " The training is done on the same exact image that we infer on, very few pixels..." ) print(" Training should be more stable given more data...") with napari.gui_qt(): viewer = napari.Viewer() viewer.add_image(image, name='image') viewer.add_image(blurred_image, name='blurred') viewer.add_image(noisy_blurred_image, name='noisy_blurred_image') viewer.add_image(lr_deconvolved_image_2_clipped, name='lr_deconvolved_image_2') viewer.add_image(lr_deconvolved_image_5_clipped, name='lr_deconvolved_image_5') viewer.add_image(lr_deconvolved_image_10_clipped, name='lr_deconvolved_image_10') viewer.add_image(lr_deconvolved_image_20_clipped, name='lr_deconvolved_image_20') viewer.add_image(deconvolved_image_clipped, name='ssi_deconvolved_image')
def demo( image_clipped: np.ndarray, two_pass: bool = False, inv_mse_before_forward_model: bool = False, inv_mse_lambda: float = 2.0, learning_rate: float = 0.01, max_epochs: int = 3000, patience: int = 1000, masking_density: float = 0.01, training_noise: float = 0.1, output_dir: str = "demo_results", loss: str = "l2", check: bool = False, optimizer: str = "esadam", scheduler: str = "plateau", clip_before_psf: bool = True, fft_psf: Union[str, bool] = "auto", standardize: bool = False, amp: bool = False, ): image_clipped = normalise(image_clipped.astype(numpy.float32)) blurred_image, psf_kernel = add_microscope_blur_2d(image_clipped) # noisy_blurred_image = add_noise(blurred_image, intensity=None, variance=0.01, sap=0.01, clip=True) noisy_blurred_image = add_poisson_gaussian_noise(blurred_image, alpha=0.001, sigma=0.1, sap=0.01, quant_bits=10) lr = ImageTranslatorLRDeconv(psf_kernel=psf_kernel, backend="cupy") lr.train(noisy_blurred_image) lr.max_num_iterations = 2 lr_deconvolved_image_2 = lr.translate(noisy_blurred_image) lr.max_num_iterations = 5 lr_deconvolved_image_5 = lr.translate(noisy_blurred_image) lr.max_num_iterations = 10 lr_deconvolved_image_10 = lr.translate(noisy_blurred_image) lr.max_num_iterations = 20 lr_deconvolved_image_20 = lr.translate(noisy_blurred_image) it_deconv = SSIDeconvolution( max_epochs=max_epochs, patience=patience, batch_size=8, learning_rate=learning_rate, normaliser_type="identity", psf_kernel=psf_kernel, model_class=UNet, masking=True, masking_density=masking_density, training_noise=training_noise, loss=loss, two_pass=two_pass, inv_mse_before_forward_model=inv_mse_before_forward_model, inv_mse_lambda=inv_mse_lambda, check=check, optimizer=optimizer, scheduler=scheduler, clip_before_psf=clip_before_psf, fft_psf=fft_psf, standardize_image=standardize, amp=amp, ) start = time.time() it_deconv.train(noisy_blurred_image) stop = time.time() print(f"Training: elapsed time: {stop - start} ") if not check: wandb.run.summary["training_time"] = stop - start start = time.time() deconvolved_image = it_deconv.translate(noisy_blurred_image) stop = time.time() print(f"inference: elapsed time: {stop - start} ") if not check: wandb.run.summary["inference_time"] = stop - start image_clipped = numpy.clip(image_clipped, 0, 1) lr_deconvolved_image_2_clipped = numpy.clip(lr_deconvolved_image_2, 0, 1) lr_deconvolved_image_5_clipped = numpy.clip(lr_deconvolved_image_5, 0, 1) lr_deconvolved_image_10_clipped = numpy.clip(lr_deconvolved_image_10, 0, 1) lr_deconvolved_image_20_clipped = numpy.clip(lr_deconvolved_image_20, 0, 1) deconvolved_image_clipped = numpy.clip(deconvolved_image, 0, 1) columns = ["PSNR", "norm spectral mutual info", "norm mutual info", "SSIM"] print_header(columns) print_score( "blurry image", psnr(image_clipped, blurred_image), spectral_mutual_information(image_clipped, blurred_image), mutual_information(image_clipped, blurred_image), ssim(image_clipped, blurred_image), ) print_score( "noisy and blurry image", psnr(image_clipped, noisy_blurred_image), spectral_mutual_information(image_clipped, noisy_blurred_image), mutual_information(image_clipped, noisy_blurred_image), ssim(image_clipped, noisy_blurred_image), ) print_score( "lr deconv (n=2)", psnr(image_clipped, lr_deconvolved_image_2_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_2_clipped), mutual_information(image_clipped, lr_deconvolved_image_2_clipped), ssim(image_clipped, lr_deconvolved_image_2_clipped), ) print_score( "lr deconv (n=5)", psnr(image_clipped, lr_deconvolved_image_5_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_5_clipped), mutual_information(image_clipped, lr_deconvolved_image_5_clipped), ssim(image_clipped, lr_deconvolved_image_5_clipped), ) print_score( "lr deconv (n=10)", psnr(image_clipped, lr_deconvolved_image_10_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_10_clipped), mutual_information(image_clipped, lr_deconvolved_image_10_clipped), ssim(image_clipped, lr_deconvolved_image_10_clipped), ) print_score( "lr deconv (n=20)", psnr(image_clipped, lr_deconvolved_image_20_clipped), spectral_mutual_information(image_clipped, lr_deconvolved_image_20_clipped), mutual_information(image_clipped, lr_deconvolved_image_20_clipped), ssim(image_clipped, lr_deconvolved_image_20_clipped), ) psnr_deconv = psnr(image_clipped, deconvolved_image_clipped) smi_deconv = spectral_mutual_information(image_clipped, deconvolved_image_clipped) mi_deconv = mutual_information(image_clipped, deconvolved_image_clipped) ssim_deconv = ssim(image_clipped, deconvolved_image_clipped) if not check: wandb.run.summary["psnr"] = psnr_deconv wandb.run.summary["smi"] = smi_deconv wandb.run.summary["mi"] = mi_deconv wandb.run.summary["ssim"] = ssim_deconv print_score( "ssi deconv", psnr_deconv, smi_deconv, mi_deconv, ssim_deconv, ) print( "NOTE: if you get a bad results for ssi, blame stochastic optimisation and retry..." ) print( " The training is done on the same exact image that we infer on, very few pixels..." ) print(" Training should be more stable given more data...") if use_napari: with napari.gui_qt(): viewer = napari.Viewer() viewer.add_image(image_clipped, name="image") viewer.add_image(blurred_image, name="blurred") viewer.add_image(noisy_blurred_image, name="noisy_blurred_image") viewer.add_image(lr_deconvolved_image_2_clipped, name="lr_deconvolved_image_2") viewer.add_image(lr_deconvolved_image_5_clipped, name="lr_deconvolved_image_5") viewer.add_image(lr_deconvolved_image_10_clipped, name="lr_deconvolved_image_10") viewer.add_image(lr_deconvolved_image_20_clipped, name="lr_deconvolved_image_20") viewer.add_image(deconvolved_image_clipped, name="ssi_deconvolved_image") else: output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) imwrite(output_dir / "image.png", image_clipped, format="png") imwrite(output_dir / "blurred.png", blurred_image, format="png") imwrite(output_dir / "noisy_blurred_image.png", noisy_blurred_image, format="png") imwrite( output_dir / "lr_deconvolved_image_2.png", lr_deconvolved_image_2_clipped, format="png", ) imwrite( output_dir / "lr_deconvolved_image_5.png", lr_deconvolved_image_5_clipped, format="png", ) imwrite( output_dir / "lr_deconvolved_image_10.png", lr_deconvolved_image_10_clipped, format="png", ) imwrite( output_dir / "lr_deconvolved_image_20.png", lr_deconvolved_image_20_clipped, format="png", ) imwrite( output_dir / "ssi_deconvolved_image.png", deconvolved_image_clipped, format="png", )