def main(args): """ train and save the DeepQ model, for the cartpole problem :param args: (ArgumentParser) the input arguments """ env = gym.make("CartPole-v0") model = DeepQ( env=env, policy=MlpPolicy, learning_rate=1e-3, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, ) model.learn(total_timesteps=args.max_timesteps, callback=callback) print("Saving model to cartpole_model.pkl") model.save("cartpole_model.pkl")
def main(args): """ train and save the DeepQ model, for the mountain car problem :param args: (ArgumentParser) the input arguments """ env = gym.make("MountainCar-v0") # using layer norm policy here is important for parameter space noise! model = DeepQ(policy=CustomPolicy, env=env, learning_rate=1e-3, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.1, param_noise=True) model.learn(total_timesteps=args.max_timesteps) print("Saving model to mountaincar_model.pkl") model.save("mountaincar_model.pkl")