예제 #1
0
def main(args):
    """
    train and save the DeepQ model, for the cartpole problem

    :param args: (ArgumentParser) the input arguments
    """
    env = gym.make("CartPole-v0")
    model = DeepQ(
        env=env,
        policy=MlpPolicy,
        learning_rate=1e-3,
        buffer_size=50000,
        exploration_fraction=0.1,
        exploration_final_eps=0.02,
    )
    model.learn(total_timesteps=args.max_timesteps, callback=callback)

    print("Saving model to cartpole_model.pkl")
    model.save("cartpole_model.pkl")
예제 #2
0
def main(args):
    """
    train and save the DeepQ model, for the mountain car problem

    :param args: (ArgumentParser) the input arguments
    """
    env = gym.make("MountainCar-v0")

    # using layer norm policy here is important for parameter space noise!
    model = DeepQ(policy=CustomPolicy,
                  env=env,
                  learning_rate=1e-3,
                  buffer_size=50000,
                  exploration_fraction=0.1,
                  exploration_final_eps=0.1,
                  param_noise=True)
    model.learn(total_timesteps=args.max_timesteps)

    print("Saving model to mountaincar_model.pkl")
    model.save("mountaincar_model.pkl")