def build_model(self): model = Sequential() model.add(Dropout(0.1, input_shape=(nn_input_dim_NN, ))) model.add( Dense(input_dim=nn_input_dim_NN, output_dim=110, init='he_normal')) model.add(PReLU(init='zero')) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(input_dim=110, output_dim=350, init='he_normal')) model.add(PReLU(init='zero')) model.add(BatchNormalization()) model.add(Dropout(0.6)) model.add(Dense(input_dim=350, output_dim=150, init='he_normal')) model.add(PReLU(init='zero')) model.add(BatchNormalization()) model.add(Dropout(0.6)) model.add(Dense(input_dim=150, output_dim=20, init='he_normal')) model.add(PReLU(init='zero')) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add( Dense(input_dim=20, output_dim=2, init='he_normal', activation='softmax')) sgd = SGD(lr=0.02, decay=1e-10, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='binary_crossentropy', class_mode='binary') return KerasClassifier(nn=model, **self.params)
def build_model(self): model = Sequential() model.add(Dropout(0.1, input_shape=(nn_input_dim_NN, ))) model.add( Dense(input_dim=nn_input_dim_NN, output_dim=62, init='he_normal')) model.add(LeakyReLU(alpha=.001)) model.add(Dropout(0.3)) model.add(Dense(input_dim=62, output_dim=158, init='he_normal')) model.add(LeakyReLU(alpha=.001)) model.add(Dropout(0.25)) model.add(Dense(input_dim=158, output_dim=20, init='he_normal')) model.add(PReLU(init='zero')) model.add(Dropout(0.2)) model.add( Dense(input_dim=20, output_dim=2, init='he_normal', activation='softmax')) #model.add(Activation('softmax')) sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='binary_crossentropy', class_mode='binary') return KerasClassifier(nn=model, **self.params)
def build_model(self): model = Sequential() model.add(Dropout(0.2, input_shape=(nn_input_dim_NN, ))) model.add( Dense(input_dim=nn_input_dim_NN, output_dim=140, init='uniform')) model.add(LeakyReLU(alpha=.00001)) model.add(BatchNormalization()) model.add(Dropout(0.6)) model.add(Dense(input_dim=140, output_dim=250, init='uniform')) model.add(LeakyReLU(alpha=.00001)) model.add(BatchNormalization()) model.add(Dropout(0.6)) model.add( Dense(input_dim=250, output_dim=90, init='uniform', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add( Dense(input_dim=90, output_dim=2, init='uniform', activation='softmax')) #model.add(Activation('softmax')) sgd = SGD(lr=0.013, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='binary_crossentropy', class_mode='binary') return KerasClassifier(nn=model, **self.params)
def build_model(self): model = Sequential() model.add(Dense(64, input_shape=nn_input_dim_NN, init='he_normal')) model.add(LeakyReLU(alpha=.00001)) model.add(Dropout(0.5)) model.add(Dense(2, init='he_normal')) model.add(Activation('softmax')) sgd = SGD(lr=0.1, decay=1e-5, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=["accuracy"]) return KerasClassifier(nn=model,**self.params)