pprint.pprint(cfg) now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') datadir = 'Data/%s' % cfg.DATASET_NAME dataset = TextDataset(datadir, cfg.EMBEDDING_TYPE, 1) filename_test = '%s/test' % (datadir) dataset.test = dataset.get_data(filename_test) if cfg.TRAIN.FLAG: filename_train = '%s/train' % (datadir) dataset.train = dataset.get_data(filename_train) ckt_logs_dir = "ckt_logs/%s/%s_%s" % (cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp) mkdir_p(ckt_logs_dir) else: s_tmp = cfg.TRAIN.PRETRAINED_MODEL ckt_logs_dir = s_tmp[:s_tmp.find('.ckpt')] model = CondGAN(image_shape=dataset.image_shape) algo = CondGANTrainer(model=model, dataset=dataset, ckt_logs_dir=ckt_logs_dir) if cfg.TRAIN.FLAG: algo.train() else: ''' For every input text embedding/sentence in the training and test datasets, generate cfg.TRAIN.NUM_COPY images with randomness from noise z and conditioning augmentation.''' algo.evaluate()
dataset = TextDataset(datadir, cfg.EMBEDDING_TYPE, 1) filename_test = '%s/test' % (datadir) dataset.test = dataset.get_data(filename_test) if cfg.TRAIN.FLAG: filename_train = '%s/train' % (datadir) dataset.train = dataset.get_data(filename_train) ckt_logs_dir = "ckt_logs/%s/%s_%s" % \ (cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp) mkdir_p(ckt_logs_dir) else: s_tmp = cfg.TRAIN.PRETRAINED_MODEL ckt_logs_dir = s_tmp[:s_tmp.find('.ckpt')] model = CondGAN( image_shape=dataset.image_shape ) algo = CondGANTrainer( model=model, dataset=dataset, ckt_logs_dir=ckt_logs_dir ) if cfg.TRAIN.FLAG: algo.train() else: ''' For every input text embedding/sentence in the training and test datasets, generate cfg.TRAIN.NUM_COPY images with randomness from noise z and conditioning augmentation.''' algo.evaluate()