예제 #1
0
    def from_image_stack(cls,
                         image_stack,
                         crop_x: int = 0,
                         crop_y: int = 0,
                         crop_z: int = 0) -> "IntensityTable":
        """Generate an IntensityTable from all the pixels in the ImageStack

        Parameters
        ----------
        crop_x : int
            number of pixels to crop from both top and bottom of x
        crop_y : int
            number of pixels to crop from both top and bottom of y
        crop_z : int
            number of pixels to crop from both top and bottom of z
        image_stack : ImageStack
            ImageStack containing pixels to be treated as intensities

        Returns
        -------
        IntensityTable :
            IntensityTable containing one intensity per pixel (across channels and rounds)

        """

        # verify the image is large enough to crop
        assert crop_z * 2 < image_stack.shape['z']
        assert crop_y * 2 < image_stack.shape['y']
        assert crop_x * 2 < image_stack.shape['x']

        zmin = crop_z
        ymin = crop_y
        xmin = crop_x
        zmax = image_stack.shape['z'] - crop_z
        ymax = image_stack.shape['y'] - crop_y
        xmax = image_stack.shape['x'] - crop_x
        data = image_stack.numpy_array.transpose(2, 3, 4, 1,
                                                 0)  # (z, y, x, ch, round)

        # crop and reshape imagestack to create IntensityTable data
        cropped_data = data[zmin:zmax, ymin:ymax, xmin:xmax, :, :]
        # (pixels, ch, round)
        intensity_data = cropped_data.reshape(-1, image_stack.num_chs,
                                              image_stack.num_rounds)

        # IntensityTable pixel coordinates
        z = np.arange(zmin, zmax)
        y = np.arange(ymin, ymax)
        x = np.arange(xmin, xmax)

        feature_attribute_data = pd.DataFrame(data=np.array(
            list(product(z, y, x))),
                                              columns=['z', 'y', 'x'])
        feature_attribute_data[Features.SPOT_RADIUS] = np.full(
            feature_attribute_data.shape[0], fill_value=0.5)

        pixel_coordinates = SpotAttributes(feature_attribute_data)

        return IntensityTable.from_spot_data(intensity_data, pixel_coordinates)
예제 #2
0
def spot_attribute_factory(n: int) -> SpotAttributes:
    """
    Construct SpotAttributes with n synthetic attributes. Each attribute has radius 1 and
    x, y, z coordinates equal to their index i in [0, n)
    """
    return SpotAttributes(
        pd.DataFrame(
            data=np.array([[i, i, i, 1] for i in np.arange(n)]),
            columns=[Axes.ZPLANE, Axes.Y, Axes.X, Features.SPOT_RADIUS]))
    def image_to_spots(
            self, data_image: Union[np.ndarray,
                                    xr.DataArray]) -> SpotAttributes:
        """

        Parameters
        ----------
        data_image : np.ndarray
            three-dimensional image containing spots to be detected

        Returns
        -------
        SpotAttributes :
            spot attributes table for all detected spots

        """
        data_image = np.asarray(data_image)
        with warnings.catch_warnings():
            warnings.simplefilter(
                'ignore', FutureWarning)  # trackpy numpy indexing warning
            warnings.simplefilter('ignore',
                                  UserWarning)  # yielded if black images
            attributes = locate(data_image,
                                diameter=self.diameter,
                                minmass=self.minmass,
                                maxsize=self.maxsize,
                                separation=self.separation,
                                noise_size=self.noise_size,
                                smoothing_size=self.smoothing_size,
                                threshold=self.threshold,
                                percentile=self.percentile,
                                preprocess=self.preprocess)

        # when zero spots are detected, 'ep' is missing from the trackpy locate results.
        if attributes.shape[0] == 0:
            attributes['ep'] = []

        # TODO ambrosejcarr: data should always be at least pseudo-3d, this may not be necessary
        # TODO ambrosejcarr: this is where max vs. sum vs. mean would be parametrized.
        # here, total_intensity = sum, intensity = max
        new_colnames = [
            'y', 'x', 'total_intensity', 'radius', 'eccentricity', 'intensity',
            'raw_mass', 'ep'
        ]
        if len(data_image.shape) == 3:
            attributes.columns = ['z'] + new_colnames
        else:
            attributes.columns = new_colnames

        attributes['spot_id'] = np.arange(attributes.shape[0])
        # convert these to int so it can be used to index
        attributes.x = attributes.x.astype(int)
        attributes.y = attributes.y.astype(int)
        attributes.z = attributes.z.astype(int)
        return SpotAttributes(attributes)
예제 #4
0
def intensity_table_factory() -> IntensityTable:
    """IntensityTable with a single feature that was measured over 2 channels and 2 rounds."""

    intensities = np.array([[[0, 3], [4, 0]]], dtype=float)
    spot_attribute_data = pd.DataFrame(
        data=[0, 0, 0, 1],
        index=[Axes.ZPLANE, Axes.Y, Axes.X, Features.SPOT_RADIUS]).T
    spot_attributes = SpotAttributes(spot_attribute_data)

    intensity_table = IntensityTable.from_spot_data(intensities,
                                                    spot_attributes)
    return intensity_table
예제 #5
0
def intensity_table_factory(data: np.ndarray=np.array([[[0, 3], [4, 0]]])) -> IntensityTable:
    """IntensityTable with a single feature that was measured over 2 channels and 2 rounds."""

    # generates spot attributes equal in size to the number of passed features.
    # each attribute has coordinates (z, y, x) equal to the feature index, and radius 1.
    spot_attributes_data = pd.DataFrame(
        data=np.array([[i, i, i, 1] for i in np.arange(data.shape[0])]),
        columns=[Axes.ZPLANE, Axes.Y, Axes.X, Features.SPOT_RADIUS]
    )

    spot_attributes = SpotAttributes(spot_attributes_data)
    intensity_table = IntensityTable.from_spot_data(data, spot_attributes)
    return intensity_table
예제 #6
0
    def _create_spot_attributes(
            self,
            region_properties: List[_RegionProperties],
            decoded_image: np.ndarray,
            target_map: TargetsMap,
            n_processes: Optional[int]=None
    ) -> Tuple[SpotAttributes, np.ndarray]:
        """

        Parameters
        ----------
        region_properties : List[_RegionProperties]
            Properties of the each connected component. Output of skimage.measure.regionprops
        decoded_image : np.ndarray
            Image whose pixels correspond to the targets that the given position in the ImageStack
            decodes to.
        target_map : TargetsMap
            Unique mapping between string target names and int target IDs.
        n_processes : Optional[int]=None
            number of processes to devote to measuring spot properties. If None, defaults to the
            result of os.nproc()

        Returns
        -------
        pd.DataFrame :
            DataFrame containing x, y, z, radius, and target name for each connected component
            feature.
        np.ndarray[bool] :
            An array with length equal to the number of features. If zero, indicates that a feature
            has failed area filters.
        """
        pool = Pool(processes=n_processes)
        mapfunc = pool.map
        applyfunc = partial(
            self._single_spot_attributes,
            decoded_image=decoded_image,
            target_map=target_map,
            min_area=self._min_area,
            max_area=self._max_area
        )

        iterable = tqdm(region_properties, disable=(not StarfishConfig().verbose))
        results = mapfunc(applyfunc, iterable)
        spot_attrs, passes_area_filter = zip(*results)

        # update passes filter
        passes_filter = np.array(passes_area_filter, dtype=np.bool)

        spot_attributes = SpotAttributes(pd.DataFrame.from_records(spot_attrs))
        return spot_attributes, passes_filter
예제 #7
0
파일: blob.py 프로젝트: mmmika/starfish
    def image_to_spots(
            self, data_image: Union[np.ndarray,
                                    xr.DataArray]) -> SpotAttributes:
        """
        Find spots using a gaussian blob finding algorithm

        Parameters
        ----------
        data_image : Union[np.ndarray, xr.DataArray]
            ImageStack containing blobs to be detected

        Returns
        -------
        SpotAttributes :
            DataFrame of metadata containing the coordinates, intensity and radius of each spot

        """

        fitted_blobs_array: np.ndarray = self.detector_method(
            data_image, self.min_sigma, self.max_sigma, self.num_sigma,
            self.threshold, self.overlap)

        if fitted_blobs_array.shape[0] == 0:
            return SpotAttributes.empty(extra_fields=['intensity', 'spot_id'])

        # create the SpotAttributes Table
        columns = [
            Axes.ZPLANE.value, Axes.Y.value, Axes.X.value, Features.SPOT_RADIUS
        ]
        fitted_blobs = pd.DataFrame(data=fitted_blobs_array, columns=columns)

        # convert standard deviation of gaussian kernel used to identify spot to radius of spot
        converted_radius = np.round(fitted_blobs[Features.SPOT_RADIUS] *
                                    np.sqrt(3))
        fitted_blobs[Features.SPOT_RADIUS] = converted_radius

        # convert the array to int so it can be used to index
        rounded_blobs = SpotAttributes(fitted_blobs.astype(int))

        rounded_blobs.data['intensity'] = measure_spot_intensity(
            data_image, rounded_blobs, self.measurement_function)
        rounded_blobs.data['spot_id'] = np.arange(rounded_blobs.data.shape[0])

        return rounded_blobs
    def image_to_spots(self, image: np.ndarray) -> SpotAttributes:
        """

        Parameters
        ----------
        image : np.ndarray
            three-dimensional numpy array containing spots to detect

        Returns
        -------
        SpotAttributes :
            spot attributes table for all detected spots

        """
        with warnings.catch_warnings():
            warnings.simplefilter(
                'ignore', FutureWarning)  # trackpy numpy indexing warning
            attributes = locate(image,
                                diameter=self.diameter,
                                minmass=self.minmass,
                                maxsize=self.maxsize,
                                separation=self.separation,
                                noise_size=self.noise_size,
                                smoothing_size=self.smoothing_size,
                                threshold=self.threshold,
                                percentile=self.percentile,
                                preprocess=self.preprocess)

        # TODO ambrosejcarr: data should always be at least pseudo-3d, this may not be necessary
        # TODO ambrosejcarr: this is where max vs. sum vs. mean would be parametrized.
        # here, total_intensity = sum, intensity = max
        new_colnames = [
            'y', 'x', 'total_intensity', 'radius', 'eccentricity', 'intensity',
            'raw_mass', 'ep'
        ]
        if len(image.shape) == 3:
            attributes.columns = ['z'] + new_colnames
        else:
            attributes.columns = new_colnames

        attributes['spot_id'] = np.arange(attributes.shape[0])
        return SpotAttributes(attributes)
def test_intensity_table_can_be_created_from_spot_attributes():
    """
    This test creates an IntensityTable from spot attributes, and verifies that the size matches
    what was requested and that the values are all zero.
    """

    # input has two spots
    spot_attributes = SpotAttributes(
        pd.DataFrame(
            data=np.array([[1, 1, 1, 1], [2, 2, 2, 1]]),
            columns=[Indices.Z, Indices.Y, Indices.X, Features.SPOT_RADIUS]))

    intensities = IntensityTable.empty_intensity_table(spot_attributes,
                                                       n_ch=1,
                                                       n_round=3)

    assert intensities.sizes[Indices.CH] == 1
    assert intensities.sizes[Indices.ROUND] == 3
    assert intensities.sizes[Features.AXIS] == 2
    assert np.all(intensities.values == 0)
예제 #10
0
def concatenate_spot_attributes_to_intensities(
    spot_attributes: Sequence[Tuple[SpotAttributes, Dict[Indices, int]]]
) -> IntensityTable:
    """
    Merge multiple spot attributes frames into a single IntensityTable without merging across
    channels and imaging rounds

    Parameters
    ----------
    spot_attributes : Sequence[Tuple[SpotAttributes, Dict[Indices, int]]]
        A sequence of SpotAttribute objects and the Indices (channel, round) that each object is
        associated with.

    Returns
    -------
    IntensityTable :
        concatenated input SpotAttributes, converted to an IntensityTable object

    """
    n_ch: int = max(inds[Indices.CH] for _, inds in spot_attributes) + 1
    n_round: int = max(inds[Indices.ROUND] for _, inds in spot_attributes) + 1

    all_spots = pd.concat([sa.data for sa, inds in spot_attributes])
    # this drop call ensures only x, y, z, radius, and quality, are passed to the IntensityTable
    features_coordinates = all_spots.drop(['spot_id', 'intensity'], axis=1)

    intensity_table = IntensityTable.empty_intensity_table(
        SpotAttributes(features_coordinates),
        n_ch,
        n_round,
    )

    i = 0
    for attrs, inds in spot_attributes:
        for _, row in attrs.data.iterrows():
            intensity_table[i, inds[Indices.CH],
                            inds[Indices.ROUND]] = row['intensity']
            i += 1

    return intensity_table
예제 #11
0
    def synthetic_intensities(cls,
                              codebook,
                              num_z: int = 12,
                              height: int = 50,
                              width: int = 40,
                              n_spots=10,
                              mean_fluor_per_spot=200,
                              mean_photons_per_fluor=50) -> "IntensityTable":
        """Create an IntensityTable containing synthetic spots with random locations

        Parameters
        ----------
        codebook : Codebook
            starfish codebook object
        num_z :
            number of z-planes to use when localizing spots
        height :
            y dimension of each synthetic plane
        width :
            x dimension of each synthetic plane
        n_spots :
            number of spots to generate
        mean_fluor_per_spot :
            mean number of fluorophores per spot
        mean_photons_per_fluor :
            mean number of photons per fluorophore.

        Returns
        -------
        IntensityTable

        """

        # TODO nsofroniew: right now there is no jitter on x-y positions of the spots
        z = np.random.randint(0, num_z, size=n_spots)
        y = np.random.randint(0, height, size=n_spots)
        x = np.random.randint(0, width, size=n_spots)
        r = np.empty(n_spots)
        r.fill(
            np.nan)  # radius is a function of the point-spread gaussian size
        spot_attributes = SpotAttributes(
            pd.DataFrame({
                Axes.ZPLANE.value: z,
                Axes.Y.value: y,
                Axes.X.value: x,
                Features.SPOT_RADIUS: r
            }))

        # empty data tensor
        data = np.zeros(shape=(n_spots, *codebook.shape[1:]))

        targets = np.random.choice(codebook.coords[Features.TARGET],
                                   size=n_spots,
                                   replace=True)
        expected_bright_locations = np.where(codebook.loc[targets])

        # create a binary matrix where "on" spots are 1
        data[expected_bright_locations] = 1

        # add physical properties of fluorescence
        data *= np.random.poisson(mean_photons_per_fluor, size=data.shape)
        data *= np.random.poisson(mean_fluor_per_spot, size=data.shape)

        # convert data to float for consistency with starfish
        data = preserve_float_range(data)
        assert 0 < data.max() <= 1

        intensities = cls.from_spot_data(data, spot_attributes)
        intensities[Features.TARGET] = (Features.AXIS, targets)

        return intensities
예제 #12
0
    def image_to_spots(
            self, data_image: Union[np.ndarray,
                                    xr.DataArray]) -> SpotAttributes:
        """measure attributes of spots detected by binarizing the image using the selected threshold

        Parameters
        ----------
        data_image: Union[np.ndarray, xr.DataArray]
            image from which spots should be extracted

        Returns
        -------
        SpotAttributes
            Attributes for each detected spot
        """

        if self.threshold is None:
            self.threshold = self._compute_threshold(data_image)

        # identify each spot's size by binarizing and calculating regionprops
        masked_image = data_image[:, :] > self.threshold
        labels = label(masked_image)[0]
        spot_props = regionprops(labels)

        # mask spots whose areas are too small or too large
        for spot_prop in spot_props:
            if spot_prop.area < self.min_obj_area or spot_prop.area > self.max_obj_area:
                masked_image[spot_prop.coords[:, 0], spot_prop.coords[:,
                                                                      1]] = 0

        # store re-calculated regionprops and labels based on the area-masked image
        self._labels = label(masked_image)[0]
        self._spot_props = regionprops(labels)

        if self.verbose:
            print('computing final spots ...')

        self._spot_coords = peak_local_max(data_image,
                                           min_distance=self.min_distance,
                                           threshold_abs=self.threshold,
                                           exclude_border=False,
                                           indices=True,
                                           num_peaks=np.inf,
                                           footprint=None,
                                           labels=self._labels)

        # TODO how to get the radius? unlikely that this can be pulled out of
        # self._spot_props, since the last call to peak_local_max can find multiple
        # peaks per label
        res = {
            Indices.X.value:
            self._spot_coords[:, 1],
            Indices.Y.value:
            self._spot_coords[:, 0],
            Indices.Z.value:
            np.zeros(len(self._spot_coords)),
            Features.SPOT_RADIUS:
            1,
            Features.SPOT_ID:
            np.arange(self._spot_coords.shape[0]),
            Features.INTENSITY:
            data_image[self._spot_coords[:, 0], self._spot_coords[:, 1]]
        }

        return SpotAttributes(pd.DataFrame(res))