예제 #1
0
def main():
	progname = os.path.basename(sys.argv[0])
	usage = progname + " averages1 averages2 --th_grp"
	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--T",           type="int",     default=0,        help=" Threshold for matching")
	parser.add_option("--J",           type="int",     default=50,       help=" J")
	parser.add_option("--max_branching",         type="int",     default=40,        help=" maximum branching")
	parser.add_option("--verbose",     action="store_true",     default=False,        help=" Threshold for matching")
	parser.add_option("--timing",      action="store_true",     default=False,        help=" Get the timing")
	(options, args) = parser.parse_args()

	if global_def.CACHE_DISABLE:
		from utilities import disable_bdb_cache
		disable_bdb_cache()

	global_def.BATCH = True

	from numpy import array
	from statistics import k_means_stab_bbenum

	R = len(args)
	Parts = []
	mem = [0]*R
	avg = [0]*R
	for r in xrange(R):
		data = EMData.read_images(args[r])
		avg[r] = len(data)
		
		part = []
        	for k in xrange(len(data)):
                	lid = data[k].get_attr('members') 
			mem[r] += len(lid)
                        lid = array(lid, 'int32') 
                        lid.sort() 
                        part.append(lid.copy())
		Parts.append(part)

	if options.timing:
		from time import time
		time1 = time()

	MATCH, STB_PART, CT_s, CT_t, ST, st = k_means_stab_bbenum(Parts, T=options.T, J=options.J, max_branching=options.max_branching, stmult=0.1, branchfunc=2)

	if options.verbose:
		print MATCH
		print STB_PART
		print CT_s
		print CT_t
		print ST
		print st
		print " "

	for i in xrange(len(MATCH)):
		u = MATCH[i][0]  # u is the group in question in partition 1
		assert len(STB_PART[u]) == CT_s[u]
		print "Group ", 
		for r in xrange(R):
			print "%3d "%(MATCH[i][r]),
		print " matches:   group size = ",
		for r in xrange(R):
			print " %3d"%len(Parts[r][MATCH[i][r]]), 
		print "     matched size = %3d"%(CT_s[u]),
		if options.verbose:
			print "   matched group = %s"%(STB_PART[u])
		else: print ""

	print "\nNumber of averages = ",
	for r in xrange(R):
		print "%3d"%(avg[r]),
	print "\nTotal number of particles = ",
	for r in xrange(R):
		print "%3d"%(mem[r]), 
	print "     number of matched particles = %5d"%(sum(CT_s))

	if options.timing:
		print "Elapsed time = ", time() - time1

	global_def.BATCH = False
예제 #2
0
def multi_align_stability_new(ali_params, mir_stab_thld = 0.0, grp_err_thld = 10000.0, err_thld = 1.732, print_individual = False, d = 64):

	def sqerr(a):
		n = len(a)
		avg = sum(a)
		sq = 0.0
		for i in xrange(n): sq += a[i]**2
		return (sq-avg*avg/n)/n

	# args - G, data -[T, d]
	def func(args, data, return_avg_pixel_error=True):
		# Computes pixel error per particle given transformation parameters (G_l)
		from math import pi, sin, cos, sqrt
		from utilities import combine_params2
	
		ali_params = data[0]
		d = data[1]

		#print ali_params

		L = len(ali_params)
		N = len(ali_params[0])/4
		#print  "        FUNC",N,L,d
	
		args_list= [0.0]*(L*3)
		for i in xrange(L*3-3):  args_list[i] = args[i]

		pt = Transform({"type":"2D"})
		sqr_pixel_error = [0.0]*N
		ave_params =[]
		hmir = 0
		for i in xrange(N):
			sum_cosa = 0.0
			sum_sina = 0.0
			sx       = [0.0]*L
			sy       = [0.0]*L
			alpha    = [0.0]*L
			for l in xrange(L):
				alpha[l], sx[l], sy[l], mirror12 = combine_params2(ali_params[l][i*4+0], ali_params[l][i*4+1], ali_params[l][i*4+2], int(ali_params[l][i*4+3]), args_list[l*3+0],args_list[l*3+1],args_list[l*3+2],0)
				hmir += mirror12
				sum_cosa += cos(alpha[l]*pi/180.0)
				sum_sina += sin(alpha[l]*pi/180.0)
			sqrtP = sqrt(sum_cosa**2+sum_sina**2)
			sum_cosa /= sqrtP
			sum_sina /= sqrtP
			#  This completes calculation of matrix H_i
			"""
			anger = 0.0
			for l in xrange(L):
				anger += (cos(alpha[l]*pi/180.0)-sum_cosa)**2
				anger += (sin(alpha[l]*pi/180.0)-sum_sina)**2
			anger *= 2
			sqr_pixel_error[i] = d*d/4.*anger/L/4.+sqerr(sx)+sqerr(sy)
			"""
			sqr_pixel_error[i] = d*d/4*(1.0-sqrtP/L) + sqerr(sx) + sqerr(sy)
			#  Get ave transform params
			pt.set_matrix([sum_cosa, sum_sina, 0.0, sum(sx)/L, -sum_sina, sum_cosa, 0.0, sum(sy)/L, 0.0, 0.0, 1.0, 0.0])
			dd = pt.get_params("2D")
			#  We are using here mirror of the FIRST SET.
			pt = Transform({"type":"2D","alpha":dd[ "alpha" ],"tx":dd[ "tx" ],"ty": dd[ "ty" ],"mirror":int(ali_params[0][i*4+3]),"scale":1.0})
			dd = pt.get_params("2D")
			ave_params.append([dd[ "alpha" ], dd[ "tx" ], dd[ "ty" ], dd[ "mirror" ]])
			#three different approaches give the same solution:
			#print i,d*d/4*(1.0-sqrtP/L) + sqerr(sx) + sqerr(sy),sqr_pixel_error[i]#, (sin((alpha[0]-alpha[1])*pi/180.0/4.0)*(d))**2/2  + ((sx[0]-sx[1])/2)**2 +  ((sy[0]-sy[1])/2)**2
		# Warning: Whatever I return here is squared pixel error, this is for the easy expression of derivative
		# Don't forget to square root it after getting the value
		if return_avg_pixel_error:         return sum(sqr_pixel_error)/N
		else: return sqr_pixel_error, ave_params


	####   MAIN BODY   ###################################################################################################
	from statistics import k_means_stab_bbenum
	from utilities import combine_params2
	from numpy import array
	from math import sqrt
	
	# I decided not to use scipy in order to reduce the dependency, I wrote the C++ code instead
	# from scipy import array, int32
	# from scipy.optimize.lbfgsb import fmin_l_bfgs_b

	# Find out the subset which is mirror stable over all runs
	all_part = []
	num_ali = len(ali_params)
	nima = len(ali_params[0])/4
	#print  num_ali,nima
	for i in xrange(num_ali):
		mirror0 = []
		mirror1 = []
		for j in xrange(nima):
			ali_params[i][j*4+3] = int(ali_params[i][j*4+3])
			if ali_params[i][j*4+3] == 0: mirror0.append(j)
			else: mirror1.append(j)
		mirror0 = array(mirror0, 'int32')
		mirror1 = array(mirror1, 'int32')
		all_part.append([mirror0, mirror1])
	match, stab_part, CT_s, CT_t, ST, st = k_means_stab_bbenum(all_part, T=0, nguesses=1)
	mir_stab_part = stab_part[0] + stab_part[1]
	mir_stab_rate = len(mir_stab_part)/float(nima)
	if mir_stab_rate <= mir_stab_thld: return [], mir_stab_rate, -1.0
	mir_stab_part.sort()
	del all_part, match, stab_part, CT_s, CT_t, ST, st

	#for j in xrange(nima):
	#	print j, ali_params[0][j*4:j*4+4], ali_params[1][j*4:j*4+4]


	# Keep the alignment parameters of mirror stable particles
	ali_params_mir_stab = [[] for i in xrange(num_ali)]
	for j in mir_stab_part:
		for i in xrange(num_ali):
			ali_params_mir_stab[i].extend(ali_params[i][j*4:j*4+4])
	nima2 = len(mir_stab_part)

	# Compute alignment parameters for the first numali-2 sets against the last (num_ali-1) one
	args = []
	for i in xrange(num_ali-1):
		alpha, sx, sy, mirror = align_diff_params(ali_params_mir_stab[i], ali_params_mir_stab[num_ali-1])
		args.extend([alpha, sx, sy])
	#print  "  ALI PARAMS  ",alpha, sx, sy, mirror
	#print  "  ALI PARAMS  ",args

	# Do an initial analysis, purge all outlier particles, whose pixel error are larger than three times of threshold
	data = [ali_params_mir_stab, d]
	pixel_error, ave_params = func(array(args), data, return_avg_pixel_error=False)

	#  Intercept here  <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
	#if True:  # these errors should now be the same as computed by ave_ali_err_params, which also uses align_diff_params as in the code above.
	#	return pixel_error_before

	ali_params_cleaned = [[] for i in xrange(num_ali)]
	cleaned_part = []
	for j in xrange(nima2):
		if sqrt(pixel_error[j]) <= 3*err_thld:
			cleaned_part.append(j)
			for i in xrange(num_ali):
				ali_params_cleaned[i].extend(ali_params_mir_stab[i][j*4:j*4+4])
	nima3 = len(cleaned_part)
	if nima3 <= 1:  return [], mir_stab_rate, sqrt(sum(pixel_error)/nima2)

	#print  "  CLEANED PART  contains ",nima3,"  images"

	# Compute alignment parameters AGAIN after exclusion of outliers for the first numali-2 sets against the last (num_ali-1) one
	args = []
	for i in xrange(num_ali-1):
		alpha, sx, sy, mirror = align_diff_params(ali_params_cleaned[i], ali_params_cleaned[num_ali-1])
		args.extend([alpha, sx, sy])
	#print  "  ALI PARAMS  ",alpha, sx, sy, mirror
	#print  "  ALI PARAMS  ",args

	# repeat the analysis for all particles, for outliers the error is supposed to increase
	pixel_error, ave_params = func(array(args), data, return_avg_pixel_error=False)

	stable_set = []
	val = 0.0
	for i in xrange(nima):
		if i in mir_stab_part:
			j = mir_stab_part.index(i)
			err = sqrt(pixel_error[j])
			if err < err_thld:
				stable_set.append([err, mir_stab_part[j], ave_params[j]])
				val += err
				if print_individual:  print "Particle %4d :  pixel error = %18.4f"%(i, err)
			else:
				if print_individual:  print "Particle %4d :  pixel error = %18.4f  unstable"%(i, err)
		else:
			if print_individual:  print "Particle %4d :  Mirror unstable"%i

	#stable_set.sort()
	#if True:  # these errors should now be the same as computed by ave_ali_err_params, which also uses align_diff_params as in the code above.
	#	return pixel_error

	return stable_set, mir_stab_rate, val/len(cleaned_part)
예제 #3
0
def main():
	progname = os.path.basename(sys.argv[0])
	usage = progname + " averages1 averages2 --th_grp"
	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--T",           type="int",     default=0,        help=" Threshold for matching")
	parser.add_option("--J",           type="int",     default=50,       help=" J")
	parser.add_option("--max_branching",         type="int",     default=40,        help=" maximum branching")
	parser.add_option("--verbose",     action="store_true",     default=False,        help=" Threshold for matching")
	parser.add_option("--timing",      action="store_true",     default=False,        help=" Get the timing")
	(options, args) = parser.parse_args()

	if global_def.CACHE_DISABLE:
		from utilities import disable_bdb_cache
		disable_bdb_cache()

	global_def.BATCH = True

	from numpy import array
	from statistics import k_means_stab_bbenum

	R = len(args)
	Parts = []
	mem = [0]*R
	avg = [0]*R
	for r in xrange(R):
		data = EMData.read_images(args[r])
		avg[r] = len(data)
		
		part = []
		for k in xrange(len(data)):
			lid = data[k].get_attr('members') 
			mem[r] += len(lid)
			lid = array(lid, 'int32') 
			lid.sort() 
			part.append(lid.copy())
		Parts.append(part)

	if options.timing:
		from time import time
		time1 = time()

	MATCH, STB_PART, CT_s, CT_t, ST, st = k_means_stab_bbenum(Parts, T=options.T, J=options.J, max_branching=options.max_branching, stmult=0.1, branchfunc=2)

	if options.verbose:
		print(MATCH)
		print(STB_PART)
		print(CT_s)
		print(CT_t)
		print(ST)
		print(st)
		print(" ")

	for i in xrange(len(MATCH)):
		u = MATCH[i][0]  # u is the group in question in partition 1
		assert len(STB_PART[u]) == CT_s[u]
		print("Group ", end=' ') 
		for r in xrange(R):
			print("%3d "%(MATCH[i][r]), end=' ')
		print(" matches:   group size = ", end=' ')
		for r in xrange(R):
			print(" %3d"%len(Parts[r][MATCH[i][r]]), end=' ') 
		print("     matched size = %3d"%(CT_s[u]), end=' ')
		if options.verbose:
			print("   matched group = %s"%(STB_PART[u]))
		else: print("")

	print("\nNumber of averages = ", end=' ')
	for r in xrange(R):
		print("%3d"%(avg[r]), end=' ')
	print("\nTotal number of particles = ", end=' ')
	for r in xrange(R):
		print("%3d"%(mem[r]), end=' ') 
	print("     number of matched particles = %5d"%(sum(CT_s)))

	if options.timing:
		print("Elapsed time = ", time() - time1)

	global_def.BATCH = False
예제 #4
0
def multi_align_stability(ali_params, mir_stab_thld = 0.0, grp_err_thld = 10000.0, err_thld = 1.732, print_individual = False, d = 64):

	def ave(a):
		n = len(a)
		ave = 0.0
		for i in xrange(n): ave += a[i]
		ave /= n
		return ave

	def var(a):
		n = len(a)
		avg = ave(a)
		var = 0.0
		for i in xrange(n): var += (a[i]-avg)**2
		return var/n

	# args - G, data -[T, d]
	def func(args, data, return_avg_pixel_error=True):

	        from math import pi, sin, cos

	        ali_params = data[0]
	        d = data[1]

	        L = len(ali_params)
	        N = len(ali_params[0])/4

	        args_list= [0.0]*(L*3)
	        for i in xrange(L*3-3):        args_list[i] = args[i]
	        cosa = [0.0]*L
	        sina = [0.0]*L
	        for i in xrange(L):
	        	cosa[i] = cos(args_list[i*3]*pi/180.0)
	        	sina[i] = sin(args_list[i*3]*pi/180.0)
	        sqr_pixel_error = [0.0]*N
	        for i in xrange(N):
	        	sum_cosa = 0.0
	        	sum_sina = 0.0
	        	sx = [0.0]*L
	        	sy = [0.0]*L
	        	for j in xrange(L):
	        		if int(ali_params[j][i*4+3]) == 0:
	        			sum_cosa += cos((args_list[j*3]+ali_params[j][i*4])*pi/180.0)
	        			sum_sina += sin((args_list[j*3]+ali_params[j][i*4])*pi/180.0)
	        			sx[j] = args_list[j*3+1]+ali_params[j][i*4+1]*cosa[j]-ali_params[j][i*4+2]*sina[j]
	        			sy[j] = args_list[j*3+2]+ali_params[j][i*4+1]*sina[j]+ali_params[j][i*4+2]*cosa[j]
	        		else:
	        			sum_cosa += cos((-args_list[j*3]+ali_params[j][i*4])*pi/180.0)
	        			sum_sina += sin((-args_list[j*3]+ali_params[j][i*4])*pi/180.0)
	        			sx[j] = -args_list[j*3+1]+ali_params[j][i*4+1]*cosa[j]+ali_params[j][i*4+2]*sina[j]
	        			sy[j] =  args_list[j*3+2]-ali_params[j][i*4+1]*sina[j]+ali_params[j][i*4+2]*cosa[j]
	        	P = sqrt(sum_cosa**2+sum_sina**2)

	        	sqr_pixel_error[i] = d*d/4.*(1-P/L)+var(sx)+var(sy)

	        # Warning: Whatever I return here is squared pixel error, this is for the easy expression of derivative
	        # Don't forget to square root it after getting the value
	        if return_avg_pixel_error:         return sum(sqr_pixel_error)/N
	        else: return sqr_pixel_error

	'''
	def dfunc(args, data):

	        from math import pi, sin, cos
	        from numpy import zeros, array, float64

	        g = zeros(args.shape, float64)

	        ali_params = data[0]
	        d = data[1]

	        L = len(ali_params)
	        N = len(ali_params[0])/4

	        args_list= [0.0]*(L*3)
	        for i in xrange(L*3-3):        args_list[i] = args[i]
	        cosa = [0.0]*L
	        sina = [0.0]*L
	        for i in xrange(L):
	        	cosa[i] = cos(args_list[i*3]*pi/180.0)
	        	sina[i] = sin(args_list[i*3]*pi/180.0)
	        for i in xrange(N):
	        	sum_cosa = 0.0
	        	sum_sina = 0.0
	        	sx = [0.0]*L
	        	sy = [0.0]*L
	        	for j in xrange(L):
	        		if int(ali_params[j][i*4+3]) == 0:
	        			sum_cosa += cos((args_list[j*3]+ali_params[j][i*4])*pi/180.0)
	        			sum_sina += sin((args_list[j*3]+ali_params[j][i*4])*pi/180.0)
	        			sx[j] = args_list[j*3+1]+ali_params[j][i*4+1]*cosa[j]-ali_params[j][i*4+2]*sina[j]
	        			sy[j] = args_list[j*3+2]+ali_params[j][i*4+1]*sina[j]+ali_params[j][i*4+2]*cosa[j]
	        		else:
	        			sum_cosa += cos((-args_list[j*3]+ali_params[j][i*4])*pi/180.0)
	        			sum_sina += sin((-args_list[j*3]+ali_params[j][i*4])*pi/180.0)
	        			sx[j] = -args_list[j*3+1]+ali_params[j][i*4+1]*cosa[j]+ali_params[j][i*4+2]*sina[j]
	        			sy[j] =  args_list[j*3+2]-ali_params[j][i*4+1]*sina[j]+ali_params[j][i*4+2]*cosa[j]
	        	P = sqrt(sum_cosa**2+sum_sina**2)
	        	sum_cosa /= P
	        	sum_sina /= P

	        	for j in xrange(L-1):
	        		# Original formula, useful for double-checking, DON'T DELETE!
	        		#g[j*3] += d*d/4.0*(-1.0)*0.5/P*(-2*sum_cosa*P*sin((args_list[j*3]+ali_params[j][i*4])*pi/180.0)+\
	        		#			      2*sum_sina*P*cos((args_list[j*3]+ali_params[j][i*4])*pi/180.0))*pi/180.0+\
	        		#      2.0*(sx[j]-ave(sx))*(-ali_params[j][i*4+1]*sin(args_list[j*3]*pi/180.0)-ali_params[j][i*4+2]*cos(args_list[j*3]*pi/180.0))*pi/180.0+\
	        		#      2.0*(sy[j]-ave(sy))*( ali_params[j][i*4+1]*cos(args_list[j*3]*pi/180.0)-ali_params[j][i*4+2]*sin(args_list[j*3]*pi/180.0))*pi/180.0
	        		dx = 2.0*(sx[j]-ave(sx))
	        		dy = 2.0*(sy[j]-ave(sy))
	        		if int(ali_params[j][i*4+3]) == 0:
	        			g[j*3] += (d*d/4.0*(sum_cosa*sin((args_list[j*3]+ali_params[j][i*4])*pi/180.0)-\
	        					sum_sina*cos((args_list[j*3]+ali_params[j][i*4])*pi/180.0))+\
	        					dx*(-ali_params[j][i*4+1]*sina[j]-ali_params[j][i*4+2]*cosa[j])+\
	        					dy*( ali_params[j][i*4+1]*cosa[j]-ali_params[j][i*4+2]*sina[j]))*pi/180.0
	        			g[j*3+1] += dx
	        			g[j*3+2] += dy
	        		else:
	        			g[j*3] += (d*d/4.0*(-sum_cosa*sin((-args_list[j*3]+ali_params[j][i*4])*pi/180.0)+\
	        					    sum_sina*cos((-args_list[j*3]+ali_params[j][i*4])*pi/180.0))+\
	        					 dx*(-ali_params[j][i*4+1]*sina[j]+ali_params[j][i*4+2]*cosa[j])+\
	        					 dy*(-ali_params[j][i*4+1]*cosa[j]-ali_params[j][i*4+2]*sina[j]))*pi/180.0
	        			g[j*3+1] += -dx
	        			g[j*3+2] += dy
	        g /= (N*L)

	        return g
	'''
	
	from statistics import k_means_stab_bbenum
	from utilities import combine_params2
	from numpy import array
	from math import sqrt
	
	# I decided not to use scipy in order to reduce the dependency, I wrote the C++ code instead
	# from scipy import array, int32
	# from scipy.optimize.lbfgsb import fmin_l_bfgs_b

	# Find out the subset which is mirror stable over all runs
	all_part = []
	num_ali = len(ali_params)
	nima = len(ali_params[0])/4
	for i in xrange(num_ali):
		mirror0 = []
		mirror1 = []
		for j in xrange(nima):
			if ali_params[i][j*4+3] == 0: mirror0.append(j)
			else: mirror1.append(j)
		mirror0 = array(mirror0, 'int32')
		mirror1 = array(mirror1, 'int32')
		all_part.append([mirror0, mirror1])
	match, stab_part, CT_s, CT_t, ST, st = k_means_stab_bbenum(all_part, T=0, nguesses=1)
	mir_stab_part = stab_part[0] + stab_part[1]
	mir_stab_rate = len(mir_stab_part)/float(nima)
	if mir_stab_rate <= mir_stab_thld: return [], mir_stab_rate, -1.0
	mir_stab_part.sort()
	del all_part, match, stab_part, CT_s, CT_t, ST, st	

	# Keep the alignment paramters of mirror stable particles
	ali_params_mir_stab = [[] for i in xrange(num_ali)]
	for j in mir_stab_part:
		for i in xrange(num_ali):
			ali_params_mir_stab[i].extend(ali_params[i][j*4:j*4+4])
	nima2 = len(mir_stab_part)

	# Find out the alignment parameters for each iteration against the last one
	args = []
	for i in xrange(num_ali-1):
		alpha, sx, sy, mirror = align_diff_params(ali_params_mir_stab[i], ali_params_mir_stab[num_ali-1])
		args.extend([alpha, sx, sy])

	# Do an initial analysis, purge all outlier particles, whose pixel error are larger than three times of threshold
	data = [ali_params_mir_stab, d]
	pixel_error_before = func(array(args), data, return_avg_pixel_error=False)
	ali_params_cleaned = [[] for i in xrange(num_ali)]
	cleaned_part = []
	for j in xrange(nima2):
		if sqrt(pixel_error_before[j]) > 3*err_thld: continue
		cleaned_part.append(j)
		for i in xrange(num_ali):
			ali_params_cleaned[i].extend(ali_params_mir_stab[i][j*4:j*4+4])
	nima3 = len(cleaned_part)
	if nima3 <= 1:  return [], mir_stab_rate, sqrt(sum(pixel_error_before)/nima2)

	# Use LBFGSB to minimize the sum of pixel errors
	data = [ali_params_cleaned, d]

	# Use Python code
	#ps_lp, val, d = fmin_l_bfgs_b(func, array(args), args=[data], fprime=dfunc, bounds=None, m=10, factr=1e3, pgtol=1e-4, iprint=-1, maxfun=100)

	# Use C++ code
	ali_params_cleaned_list = []
	for params in ali_params_cleaned: ali_params_cleaned_list.extend(params)
	results = Util.multi_align_error(args, ali_params_cleaned_list, d)
	ps_lp = results[:-1]
	val = results[-1]
	if val < 0.0:
		# This will happen in some rare cases, it should be due to rounding errors, 
		# because all results show the val is about 1e-13.
		#print "Strange results"
		#print "args =", args
		#print "ali_params_cleaned_list =", ali_params_cleaned_list
		#print "results = ", results
		val = 0.0
	del ali_params_cleaned_list	
	
	if sqrt(val) > grp_err_thld: return [], mir_stab_rate, sqrt(val)
	
	pixel_error_after = func(ps_lp, data, return_avg_pixel_error=False)

	if print_individual:
		for i in xrange(nima):
			if i in mir_stab_part:
				j = mir_stab_part.index(i)
				if j in cleaned_part:
					print "Particle %4d :  pixel error = %8.4f \n"%(i, sqrt(pixel_error_after[cleaned_part.index(j)]))
				else:
					print "Particle %4d :  pixel error = %8.4f     outlier \n"%(i, sqrt(pixel_error_before[j]))
			else: print "Particle %4d :  Mirror unstable \n"%i

	stable_set = []
	for i in xrange(nima3):
		err = sqrt(pixel_error_after[i])
		if err < err_thld: stable_set.append([err, mir_stab_part[cleaned_part[i]]])
	stable_set.sort()
		
	return stable_set, mir_stab_rate, sqrt(val)