def query_data(data): data.sort(key=lambda p: p.price) #why not just use the attribute directly high_purchase = data[-1] print('the highest price is ${:,}'.format(int(high_purchase.price))) low_purchase = data[0] print('the lowest price is ${:,}'.format(int(low_purchase.price))) # average price of house? prices = [ p.price for p in data ] avg_price = statistics.mean(prices) print('The average home price is ${:,}'.format(int(avg_price))) two_bed_homes = ( p for p in data if announce(p, '2-bedrooms, found {}'. format(p.beds)) and p.beds == 2 ) homes = [] for h in two_bed_homes: if len(homes) > 5: break homes.append(h) avg_price = statistics.mean((announce(p.price, 'price') for p in homes)) avg_baths = statistics.mean((p.baths for p in homes)) avg_sqft = statistics.mean((p.sq__ft for p in homes)) print('Average 2-bedroom home is ${:,}, baths={}, sq ft={:,}' .format(int(avg_price), round(avg_baths,1), round(avg_sqft, 1)))
def average_distribution(distributions): return TerrainDistribution( mean([x.normalized_weights()[0] for x in distributions]), mean([x.normalized_weights()[1] for x in distributions]), mean([x.normalized_weights()[2] for x in distributions]), mean([x.normalized_weights()[3] for x in distributions]) )
def main(): dbcon = {} conf = ConfigParser.ConfigParser() conf.read('/etc/eservices/iostat_hdd.cfg') dbcon.update({'dbhost': conf.get("mysql", "host")}) dbcon.update({'dbuser': conf.get("mysql", "user")}) dbcon.update({'dbpasswd': conf.get("mysql", "passwd")}) dbcon.update({'dbbase': conf.get("mysql", "base")}) dbcon.update({'hdd': conf.get("hdd", "hdd")}) dbcon.update({'service_id': conf.get("main", "service_id")}) io = [] for i in dbcon['hdd'].split(','): print "Check disk:", i io.append(IoWait(i)) print "in main", io print "io", st.mean(map(float, io)) print "Int", int(st.mean(map(float, io))) try: print "in update" con = mdb.connect(dbcon['dbhost'], dbcon['dbuser'], dbcon['dbpasswd'], dbcon['dbbase'], charset='utf8') cur = con.cursor() cur.execute("UPDATE ma_internet_v2.nginx_cur_load SET io_load = %s WHERE external_service_id = %s", (int(st.mean(map(float, io))), dbcon['service_id'],)) con.commit() except con.Error, e: logging.error("Error %d: %s", e.args[0], e.args[1]) print "Error %d: %s" % (e.args[0], e.args[1])
def show_result2(): fd_list = db.session.query(Price_History).all() # Some simple statistics for sample questions GPDALC = [] GPWALC = [] MSWALC = [] MSDALC = [] for el in fd_list: if(el.SCHOOL=='GP'): GPWALC.append(el.WALC) GPDALC.append(el.DALC) elif(el.SCHOOL=='MS'): MSWALC.append(el.WALC) MSDALC.append(el.DALC) else: print("School error") mean_GPWALC = statistics.mean(GPWALC) mean_GPDALC = statistics.mean(GPDALC) mean_MSWALC = statistics.mean(MSWALC) mean_MSDALC = statistics.mean(MSDALC) # Prepare data for google charts data = [['GP School Workday Alcohol Consumption', mean_GPDALC], ['GP School Weekend Alcohol Consumption', mean_GPWALC], ['MS School Workday Alcohol Consumption', mean_MSDALC], ['MS School Weekend Alcohol Consumption', mean_MSWALC]] return render_template('result2.html', data=data)
def process_result(self, t_frame, r_frame): print(t_frame, r_frame) try: stat_const = float(2.776) res2 = [] # frame transmission res3 = [] # throughput for i in range(int(self.T[0])): # frame transmission res2.append(t_frame[i]/r_frame[i]) res3.append(self.F * r_frame[i] / self.R) # print(res2, res3) avg_res2 = statistics.mean(res2) sd2 = statistics.stdev(res2) dif2 = sd2/math.sqrt(int(self.T[0]))*stat_const upper_bound2 = avg_res2 + dif2 lower_bound2 = avg_res2 - dif2 avg_res3 = statistics.mean(res3) sd3 = statistics.stdev(res3) dif3 = sd3/math.sqrt(int(self.T[0]))*stat_const upper_bound3 = avg_res3 + dif3 lower_bound3 = avg_res3 - dif3 except ZeroDivisionError: return float("inf"), float("inf"), float("inf"), 0, 0, 0 return avg_res2, lower_bound2, upper_bound2, avg_res3, lower_bound3, upper_bound3
def bootstrap_test(self, nsamples=100, noise=0.2): """Returns mean and std. dev. of successful recognitions.""" boot = {} for vec, pat in zip(self.pattern_vectors, self.patterns): boot[pat] = {"closest": [], "iterations": [], "full_matches": [], "accuracy": []} for sample in range(nsamples): recalled, noisy, iterations = self.recall_noisy(vec, noise=noise) self.show_pattern(noisy, "{}_{}_noisy_{}".format( noise, pat, sample)) self.show_pattern(recalled, "{}_{}_recalled_{}".format( noise, pat, sample)) # equal to any patterns? matches = {} full_match = None for vec2, pat2 in zip(self.pattern_vectors, self.patterns): matches[pat2] = list( \ vec2[0] == recalled[0]).count(True) if matches[pat2] == vec2.size: full_match = pat2 boot[pat]["iterations"].append(iterations) boot[pat]["full_matches"].append(full_match) boot[pat]["closest"].append(pat == max(matches, key=matches.get)) boot[pat]["accuracy"].append(matches[pat] / vec.size) boot[pat]["iterations"] = (mean(boot[pat]["iterations"]), stdev(boot[pat]["iterations"])) boot[pat]["accuracy"] = (mean(boot[pat]["accuracy"]), stdev(boot[pat]["accuracy"])) count_matches = lambda l: len(list(filter(lambda f: not f is None, l))) boot[pat]["full_matches"] = count_matches(boot[pat]["full_matches"]) boot[pat]["closest"] = count_matches(boot[pat]["closest"]) return boot
def sample(self, borrowers, threshold, n_iterations=1000, eps=0.0001, target=None): """ :param borrowers: list of borrower (and information about them) :type borrowers: list[Borrower] :param threshold: big losses threshold :type threshold: float :param n_iterations: number of simulations :type n_iterations: int :return: """ weights_matrix, independent_weight, losses, vitality = self.get_parameters(borrowers) res = [] iteration = 0 for iteration in range(n_iterations): res.append(self.one_loss(weights_matrix, independent_weight, losses, vitality, threshold)) if iteration > 100 and target is not None and abs(target - mean(res)) < eps: break elif iteration > 100 and (max(res) - min(res)) / (iteration ** 0.5) < eps: break print("TwoStepSampler break after {} iterations".format(iteration)) return mean(res)
def good_stdev(self, current_offer): if self.counter < 5: return False # array of utilities the opponent would get for their offer past_utils = [self.utility_for(x) for x in self.opponent_offers] old_stdev = statistics.stdev(past_utils) old_mean = statistics.mean(past_utils) if past_utils[-1] < self.penalty: return False new_utils = [] # filter outliers (2 standard deviations above or below) for u in past_utils: if old_mean - 2*old_stdev < u < old_mean + 2*old_stdev: new_utils.append(u) if len(new_utils) < 2: return False # if the utility we get for the offer is greater than the mean + 1 std dev, then return True offer_utility = self.utility_for(current_offer) new_stdev = statistics.stdev(new_utils) new_mean = statistics.mean(new_utils) return offer_utility > new_mean + new_stdev
def get_parts_closeness(part1, part2) -> float: part1_distances = part1.distances part2_distances = part2.distances mean1 = statistics.mean(part1_distances) mean2 = statistics.mean(part2_distances) difference = abs(mean1 - mean2) return difference
def reducer(key, list_of_values): acc = [] gyro = [] motypes = [] for el in list_of_values : magn = 0 try : magn = magnitude(el[5], el[6], el[7]) except: pass try: motypes.append(el[2]) except: pass if el[1] == "Acceleration": acc.append(magn) if el[1] == "Gyroscope" or el[1] == "Gyro": gyro.append(magn) words_to_count = (word for word in motypes) c = Counter(words_to_count) motype = c.most_common()[0][0] if len(acc) > 1 and len(gyro) > 1: mr.emit({ 'date':key, 'activity':motype, 'acc':mean(acc), 'gyro':mean(gyro)} )
def mean_dev(training_set): ''' Calculates and returns the mean and standard deviation to the classes yes and no of a given training set ''' class_yes = [] class_no = [] mean_yes = {} mean_no = {} dev_yes = {} dev_no = {} for key in training_set[0]: for i in range(len(training_set)): if training_set[i]['DiabetesClass'] == 'yes': class_yes.append(training_set[i][key]) else: class_no.append(training_set[i][key]) if not key == 'DiabetesClass': mean_yes[key] = statistics.mean(class_yes) mean_no[key] = statistics.mean(class_no) dev_yes[key] = statistics.stdev(class_yes) dev_no[key] = statistics.stdev(class_no) else: prob_yes = float(len(class_yes) / len(training_set)) prob_no = float(len(class_no) / len(training_set)) class_yes = [] class_no = [] return mean_yes, mean_no, dev_yes, dev_no, prob_yes, prob_no
def main(total_rolls=20000): rolls_list = rolls(total_rolls, 1, 6) sliced_sum20 = sliced_sums(20, rolls_list) sums20 = sums(sliced_sum20, -20) roll_count20 = lens(sliced_sum20) sliced_sum10k = sliced_sums(10000, rolls_list) sums10k = sums(sliced_sum10k, -10000) roll_count10k = lens(sliced_sum10k) paired_sums = [(20, sums20), (10000, sums10k)] paired_rolls = [(20, roll_count20), (10000, roll_count10k)] answers("Mean of the sum - {0} when M is {0}:", paired_sums, lambda s: statistics.mean(s)) answers("Mean of the number of rolls when M is {0}:", paired_rolls, lambda s: statistics.mean(s)) answers("Standard deviation of the sum - {0} when M is {0}:", paired_sums, lambda s: statistics.stdev(s)) answers("Standard deviation of the number of rolls when M is {0}:", paired_rolls, lambda s: statistics.stdev(s)) answers("\nView of the rolls summing to {0}\n" + format("Count", ">7") + " " + format("Sum", ">7") + " Rolls\n", [(20, sliced_sum20), (10000, sliced_sum10k)], lambda ss: ''.join( format(len(s[1]), ">7") + " " + format(s[0], ">7") + " " + format(s[1]) + "\n" for s in ss) , sep='' )
def calculate_latencies(version_dates): linux_latencies = latency(version_dates['linux'], OrderedDict(avo.os_to_kernel)) set_latex_value('linuxMeanUpdateLatency', ufloat(statistics.mean(linux_latencies.values()),statistics.stdev(linux_latencies.values()))) openssl_latencies = latency(version_dates['openssl'], OrderedDict(avo.os_to_project['openssl'])) set_latex_value('opensslMeanUpdateLatency', ufloat(statistics.mean(openssl_latencies.values()),statistics.stdev(openssl_latencies.values()))) bouncycastle_latencies = latency(version_dates['bouncycastle'], OrderedDict(avo.os_to_project['bouncycastle'])) set_latex_value('bouncycastleMeanUpdateLatency',ufloat(statistics.mean(bouncycastle_latencies.values()),statistics.stdev(bouncycastle_latencies.values())))
def survey(filtered=NO_FILTER): from statistics import mean # for lex_user in Lexicon.lex_users: # for lex in Lexicon.lex[lex_user]: # if lex.headword in Lexicon.common_vocabulary: # lex["stats"][lex.headword].update(lex.timestamp, lex.start_time) stats_by_lex = [ list(zip(*[(logic_entry["stats"][headword].count, logic_entry["stats"][headword].latency, mean(logic_entry["stats"][headword].interval) if logic_entry["stats"][headword].interval else 0, mean(logic_entry["stats"][headword].permanence) if logic_entry["stats"][ headword].permanence else 0) for logic_entry in Logicon.logic.values() if filtered.filtered(logic_entry["logic"][0])])) # for idiom_entry in Idiomaton.idiom.values() if idiom_entry["logic"][0].clazz == "E"])) for headword in Logicon.common_logics] print("Logicon.logic.", [(l, Logicon.logic[l]) for l in Logicon.logic]) print("stats_by_lex", stats_by_lex) stat_props = [ (count, latency, interval, permanence) for count, latency, interval, permanence in stats_by_lex] if any(stats_by_lex) else \ [(0, 2.5e3, 0, 0), (1, 1.5e3, 1, 1)] ticks = [Logicon.logicon[burst]["sequence"] for burst in Logicon.common_logics] return list(zip(*stat_props)), \ ["%s da Lógica" % stat for stat in "Contagem Latência Intervalo Permanência".split()], \ ticks, filtered.claz, "Índices das lógicas EICA"
def main(graph, nbk, delta_max, mu, max_eval, iter, move_operator, tabuSize, logsPath): logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) fh = logging.FileHandler(logsPath + "/tabusearch.log") fh.setLevel(logging.INFO) frmt = logging.Formatter('%(message)s') fh.setFormatter(frmt) log.addHandler(fh) all_num_evaluations = [] all_best_score = [] all_time = [] log.info("-------RUNNING TABU SEARCH-------") for i in range(iter): start = timeit.default_timer() num_evaluations, best_score, best = test_file_tabusearch(graph, nbk, delta_max, mu, max_eval, move_operator, tabuSize) stop = timeit.default_timer() log.debug('time : %f' % (stop - start)) all_num_evaluations.append(num_evaluations) all_best_score.append(best_score) all_time.append(stop - start) log.info("nbS = %d; nbK = %d; delta_max = %d; mu = %r; move_operator= %s; tabu_maxsize = %d" % (graph.get_nbVertices(), nbk, delta_max, mu, move_operator.__name__, tabuSize)) log.info("for %d iteration with %d max_evaluations each, " "\n best score found is %d," "\n total time in sec : %r" "\n mean time in sec : %r," "\n mean best_score : %r, EcT : %r" "\n mean num_eval : %r" % (iter, max_eval, min(score for score in all_best_score), sum(all_time), statistics.mean(all_time), statistics.mean(all_best_score), statistics.stdev(all_best_score), statistics.mean(all_num_evaluations)))
def test_alignment_display_speeds(self): """ Tests alignment display page """ # User visits home page, submits a protein alignment and renders it files = [ 'spa_protein_alignment.fasta', 'spa1_protein_alignment.fasta', 'ser_thr_kinase_family.fasta' ] for f in files: q_display = [] a_display = [] for i in range(3): self.client = requests.Session() self.client.get(self.live_server_url) csrftoken = self.client.cookies['csrftoken'] alignment_string = file_to_string(f) start = time.time() r = self.client.post(self.live_server_url, data={'csrfmiddlewaretoken': csrftoken, 'seq_type': 'Protein', 'align_input': alignment_string}) roundtrip1 = time.time() - start q_display.append(roundtrip1) render_form = html.parse(StringIO(r.text)).getroot().cssselect('form[id="render"]') start = time.time() r = self.client.get(self.live_server_url + render_form[0].attrib.get('action')) roundtrip2 = time.time() - start a_display.append(roundtrip2) self.client.close() self.assertTrue(mean(q_display) <= 2, 'query sequences display of %s took: %s' % (f, mean(q_display))) self.assertTrue(mean(a_display) <= 2, 'alignment display of %s took: %s' % (f, mean(a_display)))
def threshold(imageArray): balanceAr=[] newAr = imageArray #averages each pixle's RGB values for evryRow in imageArray: for evryPix in evryRow: avgNum = mean(evryPix[:3]) balanceAr.append(avgNum) #averages all pixle averages balance = mean(balanceAr) for evryRow in newAr: for evryPix in evryRow: #brighter pixles are made white if mean(evryPix[:3]) > balance: evryPix[0] = 255 evryPix[1] = 255 evryPix[2] = 255 #darker pixles made black else: evryPix[0] = 0 evryPix[1] = 0 evryPix[2] = 0 return newAr
def uniform_input(): global current_delays, previous_delays mu1 = statistics.mean(previous_delays) mu2 = statistics.mean(current_delays) two_sigma1 = 2*statistics.stdev(previous_delays) print ("unif check: " + str(mu1-two_sigma1) + " <= " + str(mu2) + " <= " + str(mu1+two_sigma1) + " answer is: " + str(mu1-two_sigma1 <= mu2 <= mu1+two_sigma1)) return mu1-two_sigma1 <= mu2 <= mu1+two_sigma1
def printLEMranks(results_file,LEM_file,fname="LEMranks.txt",use_pldLap=False,plotresults=False,title="11D malaria 40 hr 90 TF, scaling factor 0.05"): # use_pldLap = False or 0 means use sqrt loss / root if use_pldLap: source,target,type_reg,lem_score = fileparsers.parseLEMfile(-1,LEM_file) else: source,target,type_reg,sqrtlossdroot_score = fileparsers.parseLEMfile_sqrtlossdroot(2,LEM_file) totaledges = float(len(source)) results = json.load(open(results_file,'r')) try: network_spec_str = results["Network"] LEMranks = getLEMranks(network_spec_str,totaledges,source,target,type_reg) print "Mean: {}".format(statistics.mean(LEMranks)) print "Median: {}".format(statistics.median(LEMranks)) print "% stable FCs: {}".format(float(results["StableFCParameterCount"])/float(results["ParameterCount"])) print "% pattern matches: {}".format(float(results["StableFCMatchesParameterCount"])/float(results["ParameterCount"])) except: stats=[] for R in results: network_spec_str = R["Network"] LEMranks = getLEMranks(network_spec_str,totaledges,source,target,type_reg) stats.append( (statistics.mean(LEMranks),statistics.median(LEMranks),float(R["StableFCMatchesParameterCount"])/float(R["ParameterCount"])) ) with open(fname,'w') as sf: for s in stats: sf.write('/'.join([str(t) for t in s])+"\n") if plotresults: plotLEMranks(stats,title,use_pldLap)
def run_simulation(init_duration, init_stake, samples, player): """ Run simulation, print the result to stdout """ wheel = create_wheel() table = Table(wheel) game = RouletteGame(wheel, table) simulator = Simulator(game, player, init_duration=init_duration, samples=samples, init_stake=init_stake) simulator.gather() durations = simulator.durations maxima = simulator.maxima print(player) print() print("Durations") print(" min :", min(durations)) print(" max :", max(durations)) print(" mean: %.2f" % statistics.mean(durations)) print(" dev : %.2f" % statistics.stdev(durations)) print("Maxima") print(" min :", min(maxima)) print(" max :", max(maxima)) print(" mean: %.2f" % statistics.mean(maxima)) print(" dev : %.2f" % statistics.stdev(maxima))
def monitor(q, lamda): print("\n--------------------------------") print(" Monitoring Current Queue ") print("--------------------------------\n") serv_times = [event.serv_time for event in list(q)] mean = stats.mean(serv_times) ts.append(mean) print("mean Ts = ", mean) if (len(serv_times) > 1): std_dev = stats.stdev(serv_times) print("std dev = ", std_dev) wait_times = [event.wait_time for event in list(q)] avg_wait_time = stats.mean(wait_times) tws.append(avg_wait_time) w = lamda * avg_wait_time avg_ws.append(w) print("w = ", w) total_times = [event.wait_time + event.serv_time for event in list(q)] avg_time_in_system = stats.mean(total_times) q = lamda * avg_time_in_system avg_qs.append(q) print("q = ", q) print("--------------------------------\n")
def show_result(): fd_list = db.session.query(Formdata).all() # Some simple statistics for sample questions satisfaction = [] q1 = [] q2 = [] for el in fd_list: satisfaction.append(int(el.satisfaction)) q1.append(int(el.q1)) q2.append(int(el.q2)) if len(satisfaction) > 0: mean_satisfaction = statistics.mean(satisfaction) else: mean_satisfaction = 0 if len(q1) > 0: mean_q1 = statistics.mean(q1) else: mean_q1 = 0 if len(q2) > 0: mean_q2 = statistics.mean(q2) else: mean_q2 = 0 # Prepare data for google charts data = [['Satisfaction', mean_satisfaction], ['Python skill', mean_q1], ['Flask skill', mean_q2]] return render_template('result.html', data=data)
def nutritionfacts(self): # print keys svgdata = "" frame_x = self.width * self.bins + 100 - 90 frame_y = (self.graphheight + 700) // 2 + 25 - self.graphheight for i, s in enumerate([l for l in self.points if l[2]]): mu = "μ = —" sigma = "σ = —" if len(s[0]) != 0: xmean = stat.mean([t[0] for t in s[0]]) xsigma = stat.pstdev([t[0] for t in s[0]], xmean) ymean = stat.mean([t[1] for t in s[0]]) ysigma = stat.pstdev([t[1] for t in s[0]], ymean) mu = "μ = (" + str(round(xmean, 4)) + ", " + str(round(ymean, 4)) + ")" sigma = "σ = (" + str(round(xsigma, 4)) + ", " + str(round(ysigma, 4)) + ")" line_y = frame_y + i * 65 svgdata += circle(frame_x - 4, line_y + 3, 2, s[1]) svgdata += circle(frame_x + 4, line_y + 4, 2, s[1]) svgdata += circle(frame_x - 1, line_y + 10, 2, s[1]) svgdata += text(frame_x + 20, line_y + 10, s[2], align=-1, color=s[1], font="Neue Frutiger 65") svgdata += text(frame_x + 28, line_y + 25, "n = " + str(len(s[0])), align=-1, color=s[1]) svgdata += text(frame_x + 28, line_y + 40, mu, align=-1, color=s[1]) svgdata += text(frame_x + 28, line_y + 55, sigma, align=-1, color=s[1]) self._frostbyte(svgdata)
def features_present1(self, othertmpft): a=FeatureFinder() a.train(othertmpft) j=a.scan_data(othertmpft) features=list() dre=self.dict_process(othertmpft) sendback=list() final_list=list() del j[0] del j[len(j)-1] for i in j: #print(i.location) if i.location<2: final_list.append(Feature(i.location, statistics.mean(dre[i.location-1:i.location+3]))) else: final_list.append(Feature(i.location, statistics.mean(dre[i.location-2:i.location+2]))) for i in self.outline: if type(i)==Feature:features.append(i) for i in features: if len(final_list)>0:l=min(final_list, key=lambda x: abs(i.loc-x.loc)) else:return [0]*len(self.outline) dis=len(othertmpft)-abs(i.loc-l.loc) penalize_by=dis/len(othertmpft) #print(penalize_by) sendback.append(statistics.mean([penalize_by, self.t(abs(i.lo-l.lo))])) # print(sendback) #print("I am features1") return self.find_outliar(sendback)
def scan(self): dre=list() final=list() dre=self.dict_process(self.data) pol=[] oo=list() for d in self.listy: r=self.__process(d) if len(r[1])<2 and not len(r[1])==0:pol.append(statistics.mean(r[1])) elif len(r[1])==0:pass else:pol.append(statistics.mean(r[1])) # print(pol) for i in range(len(pol)): final.append(Slope(self.download[i].location, pol[i])) ## print(final) del self.download[0] del self.download[-1] last=1 for i in range(len(self.download)): try: final.insert(i+last, Feature(self.download[i].location, statistics.mean(dre[self.download[i].location-2:self.download[i].location+2]))) except statistics.StatisticsError: #del final[i-1] pass last+=1 # print(final) self.outline=final
def csv_dict_reader(file_obj): """ Read a CSV file using csv.DictReader """ reader = csv.DictReader(file_obj, delimiter=',') num_likes = [] num_comments = [] num_shares = [] for line in reader: p = int(line["num_likes"]) q = int(line["first_page_comment"]) r = int(line["comments_beyond_pageone"]) num_likes.append(p) num_comments.append(q) num_shares.append(r) mean_num_likes = statistics.mean(num_likes) stdev_num_likes = statistics.stdev(num_likes) mean_num_comments = statistics.mean(num_comments) stdev_num_comments = statistics.stdev(num_comments) mean_num_shares = statistics.mean(num_shares) stdev_num_shares = statistics.stdev(num_shares) covariance_likes = stdev_num_likes / mean_num_likes covariance_comments = stdev_num_comments / mean_num_comments covariance_shares = stdev_num_shares / mean_num_shares w = csv.writer(open("svm_dataset.csv","a"),delimiter=',',quoting=csv.QUOTE_ALL) w.writerow([mean_num_likes,stdev_num_likes,covariance_likes,mean_num_comments,stdev_num_comments,covariance_comments,mean_num_shares,stdev_num_shares,covariance_shares])
def insertNormalizedModelInDB(idUser, idString, keystroke, isTest = False): insertNormalizedRecord = replaceIfIsTest("INSERT INTO `mdl_user#isTest_keystroke_normalized`(`id_user`, `id_string`) VALUES (%s, %s)", isTest); updateNormalizedRecord = replaceIfIsTest("UPDATE `mdl_user#isTest_keystroke_normalized` ", isTest); executeSqlInDB(insertNormalizedRecord, (idUser, idString)); keyDimensionsExtractor = KeystrokeDimensionsExtractor(keystroke); #extracting dimensions timePressed = keyDimensionsExtractor.getTimePressed(); #geting avarage and standardDeviation timePressedAverage = statistics.mean(timePressed); timePressedstandardDeviation = statistics.pstdev(timePressed); latencies = keyDimensionsExtractor.getLatencies(); latenciesAverage = statistics.mean(latencies); latenciesStandardDeviation = statistics.pstdev(latencies); dbModel = { 'id_user': idUser, 'id_string': idString, 'press_average': timePressedAverage, 'latency_avarage': latenciesAverage, 'press_standard_deviation': timePressedstandardDeviation, 'latency_standard_deviation': latenciesStandardDeviation, } #update in table created before updateNormalizedRecord = updateNormalizedRecord + (" SET `press_average`= %(press_average)s,`latency_avarage`= %(latency_avarage)s, `press_standard_deviation`= %(press_standard_deviation)s,`latency_standard_deviation`= %(latency_standard_deviation)s " " WHERE `id_user`= %(id_user)s AND `id_string`= %(id_string)s"); executeSqlInDB(updateNormalizedRecord, dbModel);
def get_stats_window(depth_iterator, length, window_size): """Calculate min/max/mean and min/max windowed mean. Assumes the depth_iterator will fill in all the implicit zero entries which ``samtools depth`` may omit! Assumes window_size < number of values in iterator! """ window = deque() total_cov = 0 min_cov = None max_cov = 0.0 assert 1 <= window_size <= length prev_pos = 0 while len(window) < window_size: try: ref, pos, depth = next(depth_iterator) except NoCoverage: return 0, 0, 0.0, 0.0, 0.0 except StopIteration: outstr = "Not enough depth values to fill %i window" % window_size logger.info(outstr) raise ValueError("%s" % outstr) prev_pos += 1 assert pos == prev_pos, "Discontinuity in cov vals for %s position %i" % (ref, pos) total_cov += depth if min_cov is None: min_cov = depth else: min_cov = min(min_cov, depth) max_cov = max(max_cov, depth) window.append(depth) assert len(window) == window_size min_win = max_win = mean(window) for ref, pos, depth in depth_iterator: prev_pos += 1 assert pos == prev_pos, "Discontinuity in cov val for %s position %i" % (ref, pos) total_cov += depth min_cov = min(min_cov, depth) max_cov = max(max_cov, depth) window.popleft() window.append(depth) assert len(window) == window_size win_depth = mean(window) min_win = min(min_win, win_depth) max_win = max(max_win, win_depth) mean_cov = total_cov / float(length) assert prev_pos == length, "Missing final coverage?" assert len(window) == window_size assert min_cov <= mean_cov <= max_cov assert min_cov <= min_win <= max_win <= max_cov return min_cov, max_cov, mean_cov, min_win, max_win
def show_result3(): fd_list = db.session.query(Price_History).all() # Some simple statistics for sample questions MDALC = [] MWALC = [] FWALC = [] FDALC = [] for el in fd_list: if(el.SEX=='M'): MWALC.append(el.WALC) MDALC.append(el.DALC) elif(el.SEX=='F'): FWALC.append(el.WALC) FDALC.append(el.DALC) else: print("Sex error") mean_MWALC = statistics.mean(MWALC) mean_MDALC = statistics.mean(MDALC) mean_FWALC = statistics.mean(FWALC) mean_FDALC = statistics.mean(FDALC) # Prepare data for google charts data = [['Female Workday Alcohol Consumption', mean_FDALC], ['Female Weekend Alcohol Consumption', mean_FWALC], ['Male Workday Alcohol Consumption', mean_MDALC], ['Male Weekend Alcohol Consumption', mean_MWALC]] return render_template('result3.html', data=data)
def analyzeData(purchases, times): std = statistics.stdev(purchases, statistics.mean(purchases)) data = [] for i in range(len(purchases)): if purchases[i] > (statistics.mean(purchases) + std * 1.5): outliers.append(purchases[i]) else: trimmedData.append(purchases[i]) trimmedTimes.append(times[i]) for i in range(max(trimmedTimes)): data.append(0) flag = 0 for w in trimmedTimes: data[w - 1] += trimmedData[flag] flag = flag + 1 for w in range(max(trimmedTimes) - 1): data[w + 1] += data[w] for i in outliers: for w in range(len(data)): data[w] += i return data
def get_mean_stdev(array): return statistics.mean(array), statistics.stdev(array)
time += world.waiting_times[num_of_transitions] num_of_transitions += 1 #print(time) total_population = sum([group.size for group in world.groups]) total_cooperators = sum([group.num_of_coops for group in world.groups]) run_series.append(total_cooperators / total_population) matrix_of_runs.append(run_series) print(run) #pdb.set_trace() avg_of_runs = [] for i in range(GRANULARITY): across_runs = [] for run in range(RUNS): across_runs.append(matrix_of_runs[run][i]) avg_of_runs.append(mean(across_runs)) avg_of_runs_array = np.array(avg_of_runs) ax.plot(x, avg_of_runs_array, label='eta = 0') matrix_of_runs = [] for run in range(RUNS): run_series = [] for i in range(GRANULARITY): migration = 0.05 * i / 50 world = World(initial_groups, B=10, eta=0.006, mu=migration) time = 0 num_of_transitions = 0 while time < TIME:
def operation_data(uuid, operation): list_operations = ['max', 'min', 'mean'] if operation not in list_operations: return jsonify({"status": "failed", "message": "invalid operation", "data": []}) logger.info(f"Retrieving data associated with UUID '{uuid}'") try: data = data_store.get(uuid) except KeyError: logger.warning(f"cannot retrieve data associated with UUID '{uuid}'") return jsonify({"status": "failed", "message": "data cannot be retrieved", "data": []}) if operation == 'max': return jsonify({"status": "success", "message": "operation successfuly", "max": max(data)}) elif operation == 'min': return jsonify({"status": "success", "message": "operation successfuly", "max": min(data)}) elif operation == 'mean': return jsonify({"status": "success", "message": "operation successfuly", "mean": mean(data)})
def moyenne(self): print(f"{self.prenom} a eu les notes suivantes : {self.notes}") self.moyenneuser=mean(self.notes) print(f"{self.prenom} a une moyenne de {self.moyenneuser}")
for line in f: values = [float(el) for el in line.split("]")[0].strip("[").split(",")] n = len(values) instance = line.split(",")[n].split(".")[0].split("/")[-1] controller = line.split(",")[n+1].split("/")[-1].split("_gen_")[0] scores.append([values, instance, controller]) inst_contr_dict = dict() test_instances = [] for el in scores: if el[1] not in test_instances: test_instances.append(el[1]) #inst_contr_dict[(el[1],el[2])] = (mean(el[0]) - RS_res) / (BK - RS_res) inst_contr_dict[(el[1],el[2])] = mean(el[0]) def xor(a, b): return (a and not b) or (not a and b) def order(x): if "0a" in x: return x.split("_")[0] + "_A_" + x.split("_")[1] elif "sko" in x: return x.split("_")[0] + "_SKO_" + x.split("_")[1] elif "0b" in x:
import statistics as stat em1 = {'name': 'John', 'salary': 60000} em2 = {'name': 'Mark', 'salary': 70000} em3 = {'name': 'Dan', 'salary': 50000} emps = [em1, em2, em3] print(emps) #薪資總和? salary = [] #建立數組 for s in emps: #放內容到數組 salary.append(s['salary']) print(sum(salary)) print(max(salary)) print(min(salary)) print(stat.mean(salary))
from subprocess import Popen, PIPE import sys import statistics def get_wall_time(prog, t, n): p = Popen(["/usr/bin/time", "-p", prog, str(t), str(n)], stdout=PIPE, stderr=PIPE) o, e = p.communicate() line = str(e).split('\\n')[0] val = line.split(' ')[-1] return float(val) if __name__ == "__main__": prog = sys.argv[2] runs = int(sys.argv[1]) times = [] threads = int(sys.argv[3]) n = int(sys.argv[4]) for i in range(0, runs): time = get_wall_time(prog, threads, n) times.append(time) for i in range(0, runs - 1): print(times[i], end=",") print(times[runs - 1]) print("{:.2f},{:.2f}".format(statistics.mean(times), statistics.stdev(times)))
deck = deck[1:] cards_rem.extend(hand) return len(hand) # n +=1 rem = [] while n < N: x = sim() rem.append(x) #print(x) n += 1 rem.sort() print( "Sample mean of remaining cards: ", mean(rem) ) print( "Sample standard deviation of remaining cards: ", stdev(rem) ) #(mu, sigma) = norm.fit(rem) n, bins, patches = plt.hist(rem, bins='auto', normed=True) #y = mlab.normpdf(bins, mean(rem), stdev(rem)**2) avg = mean(rem) var= stdev(rem)**2 pdf_x = np.linspace(np.min(rem), np.max(rem), 100) pdf_y = 1.0/np.sqrt(2*np.pi*var)*np.exp(-0.5*(pdf_x-avg)**2/var) plt.plot(pdf_x, pdf_y, 'k--', linewidth=2) plt.title('Histogram of cards remaining') plt.xlabel('No. Cards Remaining')
# Calculate cumulative load Ellsworth_cumload = np.cumsum(Ellsworth_load) DBasin_cumload = np.cumsum(DBasin_load) Wetland_cumload = np.cumsum(Wetland_load) Channel_cumload = np.cumsum(Channel_load) #----------------------------------------------------------------------# # Print final load released print("Ellsworth:", Ellsworth_cumload[-1]) print("Doyle Basin:", DBasin_cumload[-1]) print("Wetland:", Wetland_cumload[-1]) print("Channel to Outfall:", Channel_cumload[-1]) print("Ellsworth Avg", st.mean(Ellsworth_conc)) print("Doyle Basin Avg", st.mean(DBasin_conc)) print("Wetland Avg", st.mean(Wetland_conc)) print("Channel Avg", st.mean(Channel_conc)) #----------------------------------------------------------------------# # Plot Result fig, ax = plt.subplots(4, 4) ax[0,0].plot(Ellsworth_inflow_m, color='#6CC6D1', linewidth=2) ax[0,0].set_xticks([]) ax[0,0].set_yticks([0,3,6,9]) ax[0,0].set_yticklabels(["0","3","6","9"]) ax[0,0].set_ylim(0,10) ax[0,0].set_xlim(0,86400) ax[0,0].set_ylabel("Inflow (m³/s)")
# =======IF======= from statistics import mean # média importada n1 = float(input('Digite sua primeira nota: ')) n2 = float(input('Digite sua segunda nota: ')) n3 = float(input('Digite sua terceira nota: ')) m = mean([n1, n2, n3]) print('Sua média é: {:.2f}' .format(m)) if m >= 7: # se a média for maior que 7. Nao esquecer dois ponto : # precisa ser escrito com tab, pois esta subordinado ao IF print('Congrats, aprovado!') else: # se não for maior que 7 # precisa ser escrito com tab, pois esta subordinado ao ELSE print('Burro pra caralho!') nome = str(input('Qual o seu nome? ')) if nome == 'Paulo': # se o nome foi igual a paulo print('Que nome bonito!') # CONDIÇÃO SIMPLES não precisa do else (se não) # condição que sempre vai ocorrer pois esta fora do if print('Tenha um bom dia, {}.' .format(nome)) nome = str(input('Qual o seu nome? ')) if nome == 'Paulo': # se print('Que nome bonito!') else: # se nao. Se o nome nao foi igual a paulo print('Seu nome é bem normal') # ESTRUTURA CONDICIONAL COMPOSTA # como esta fora do tab irá ocorrer de qualquer maneira print('Tenha um bom dia, {}.' .format(nome))
def print_stats(l): c = Counter(l) print(c) print('mean', mean(l)) print('variance', pvariance(l)) print('cycle_len', findCycle(l))
# Stream column for top 5 songs only top5_streams = [2993988783, 1829621841, 1460802540, 1386258295, 1311243745] def average(values): total = 0. for s in values: total += s return total/len(values) total_average = average(top5_streams) ## 2. Introduction to Modules ## top5_streams = [2993988783, 1829621841, 1460802540, 1386258295, 1311243745] import statistics average = statistics.mean(top5_streams) ## 3. Loading our data using the CSV module ## import csv f = open("top100.csv","r") csvreader = csv.reader(f) music = list(csvreader) print(music) ## 4. Understanding the namespace ## import statistics print(dir()) print(dir(statistics))
# read the file with open('turk.csv') as csvfile: turk = csv.reader(csvfile) count = 0 for row in turk: if count == 0: count = 1 continue babel_jaccard.append(float(row[3])) babel_edit.append(int(row[4])) babel_answer.append(int(row[10])) mrpc_answer.append(int(row[11])) # hist/mean/median for rows 1-69 of babel_answer print("mean of rows 1-69 of babel_answer is: ", str(statistics.mean(babel_answer[0:69]))) print("median of rows 1-69 of babel_answer is: ", str(statistics.median(babel_answer[0:69]))) hist1 = plt.hist(babel_answer[0:69], [0, 1, 2, 3, 4, 5, 6]) table1 = {} table1['babel answer'] = [0, 1, 2, 3, 4, 5] table1['count'] = hist1[0].tolist() df1 = pd.DataFrame(table1, columns=['babel answer', 'count']) df1.to_csv('/Users/ellachang/Desktop/first_babel.csv', index=False, header=True) # hist/mean/median for rows 70-170 of babel_answer print("mean of rows 70-170 of babel_answer is: ", str(statistics.mean(babel_answer[69:170]))) print("median of rows 70-170 of babel_answer is: ",
import pandas as pd import statistics import csv df = pd.read_csv("data.csv") height_list = df["Height(Inches)"].to_list() weight_list = df["Weight(Pounds)"].to_list() height_mean = statistics.mean(height_list) weight_mean = statistics.mean(weight_list) height_median = statistics.median(height_list) weight_median = statistics.median(weight_list) height_mode = statistics.mode(height_list) weight_mode = statistics.mode(weight_list) print("Mean,Median and Mode of height is :", height_mean, height_median, height_mode) print("Mean,Median and Mode of weight is :", weight_mean, weight_median, weight_mode) height_std_deviation = statistics.stdev(height_list) print("Standard deviation of this data is ", height_std_deviation) weight_std_deviation = statistics.stdev(weight_list) print("Standard deviation of this data is ", weight_std_deviation) height_first_std_deviation_start, height_first_std_deviation_end = height_mean - height_std_deviation, height_mean + height_std_deviation height_second_std_deviation_start, height_second_std_deviation_end = height_mean - ( 2 * height_std_deviation), height_mean + (2 * height_std_deviation) height_third_std_deviation_start, height_third_std_deviation_end = height_mean - (
def average_reviewer_score(self): reviewer_ratings = review_models.ReviewerRating.objects.filter(assignment__reviewer=self) ratings = [reviewer_rating.rating for reviewer_rating in reviewer_ratings] return statistics.mean(ratings) if ratings else 0
dates.append(row[1]) #loop through earnings list for i in range(len(earnings)): #increment total earnings total_earnings += int(earnings[i]) #if not first record, calculate earnings delta and append to list if i != 0: earnings_delta.append(int(earnings[i]) - int(earnings[i-1])) #calculate max, min, and avg changes max_change = round(max(earnings_delta),0) min_change = round(min(earnings_delta),0) avg_change = round(mean(earnings_delta),2) #Insert null value into earnings list to match date indexes earnings_delta.insert(0,0) #create summary dictionary based on earnings delta and dates summary_dict = dict(zip(earnings_delta, dates)) #print summary print("Financial Analysis") print("------------------------------------------") print("Total Months: " + str(total_months)) print("Total: " + str(round(total_earnings,0))) print("Average Change: " + "$" + str(avg_change)) print("Greatest Increase in Profits: " + summary_dict[max_change] + " ($" + str(max_change) + ")") print("Greatest Decrease in Profits: " + summary_dict[min_change] + " ($" + str(min_change) +")")
import statistics import matplotlib import matplotlib.pyplot as plt import requests matplotlib.use('Qt5Agg') matplotlib.rcParams['backend.qt5'] = 'PySide2' # matplotlib.use('Cairo') data = requests.get("http://127.0.0.1:5000/goc").json()[3:] total_population = [d["Total population"] for d in data] avg_pop = statistics.mean(total_population) provinces = [] in_migration = [] out_migration = [] total_population = [] rate = [] for d in data: provinces.append(d["Province"]) in_migration.append(d["In-migration"]) out_migration.append(d["Out-migration"]) total_population.append(d["Total population"]) rate.append(d["Rate of net migration (‰)"]) figure, ax1 = plt.subplots()
def centroid(coordinates): # Returns the mean of a list of coordinates like [(lat, lon)]. # Source: https://stackoverflow.com/a/23021198 latitudes, longitudes = coordinates[0::2], coordinates[1::2] return (statistics.mean(latitudes), statistics.mean(longitudes))
def mean(self, col): """Returns mean in column""" data = self.__bin_read(key=self.__index_to_col(col)) return int(statistics.mean(list(map(int, data))))
fout_dir = sys.argv[2] fout = open(fout_dir + finput.split('/')[-1].split('.')[0] + ".bed", 'w') with open(finput, 'r') as fp: for line in fp: line_temp = line.strip().split('\t') meths = line_temp[3].split('..') fout.write('\t'.join(line_temp[0:3]) + '\t') tmp_indi_M = [] for meth in meths: M = str( round( mean([ float(x.split('/')[0]) / float(x.split('/')[1]) for x in meth.split(',') if int(x.split('/')[1]) > 0 ]), 3)) indi_M = [ str(round(float(x.split('/')[0]) / float(x.split('/')[1]), 3)) if int(x.split('/')[1]) > 0 else M for x in meth.split(',') ] tmp_indi_M.append(','.join(indi_M)) fout.write('..'.join(tmp_indi_M) + '\n') fout.close() ''' AN05483_Control_NeuN X1525_Control_NeuN X1527_Control_NeuN X1531_Control_NeuN X1536_Control_NeuN X1538_Control_NeuN X1539_Control_NeuN X3590_Control_NeuN X3602_Con trol_NeuN X4615_Control_NeuN ABBY_ND ANJA_ND BELEKA_ND CALLIE_ND DUNCAN_ND LULU_ND LYK_ND MELISSA_ND OSSABAW_ND Roger_ND YN04-200_ND YN08-380_ND Y N09-122_ND YN09-173_ND YN09-179_ND YN09-72_ND YN11-64_ND YN11-77_ND YN12-654_ND YN14-248_ND AN03398_Control_Olig2 AN15240_Control_Olig2 AN16799_Control_Olig2 X 1527_Control_Olig2 X1532_Control_Olig2 X1538_Control_Olig2 X1539_Control_Olig2 X1541_Control_Olig2 X3602_Control_Olig2 X4615_Control_Olig2 ABBY_OD ANJA_OD BELEKA_OD B JORN_OD CALLIE_OD DUNCAN_OD LULU_OD MELISSA_OD OSSABAW_OD Roger_OD YN04-200_OD YN08-380_OD YN09-122_OD YN09-173_OD YN09-72_OD YN11-300_OD YN11-77_O
def pullMaddenRatings(conn, season, url = 'https://ratings-api.ea.com/v2/entities/m22-ratings?filter=iteration:launch-ratings&sort=overall_rating:DESC,firstName:ASC&limit=1000&offset=2000', timestamp = 'NULL'): teams = getTeamId(conn) players = getPlayerId(season,conn) sql = InsertTable("madden_ratings.playerRatings") r = requests.get(url) data = r.json() ## pull all depth charts divs for playerEntry in data['docs']: teamName = playerEntry['team'] playerName = playerEntry['fullNameForSearch'] position = playerEntry['position'] teamId = teams.teamId(teamName,conn) playerId = players.playerId([ remove_non_ascii(playerName), str(teamId), position, str(season)], conn ) routeRunning = s.mean([ int(playerEntry['mediumRouteRunning_rating']), int(playerEntry['deepRouteRunning_rating']), int(playerEntry['shortRouteRunning_rating']) ]) throwAccuracy = s.mean([ int(playerEntry['throwAccuracyShort_rating']), int(playerEntry['throwAccuracyDeep_rating']), int(playerEntry['throwAccuracyMid_rating']) ]) print(playerId,'-',playerName) sql.appendRow([ ['NULL',''],## id [remove_non_ascii(playerName).replace("'","\'"),'string'],##playerName [str(playerId),''],##playerId [str(season),''],##season [teamName,'string'],## team [teamId,''],##teamId, [position,'string'],#position [playerEntry['height'],''],#height [playerEntry['weight'],''],##weight [playerEntry['overall_rating'],''],##overall [playerEntry['speed_rating'],''],##speed [playerEntry['acceleration_rating'],''],##acceleration [playerEntry['strength_rating'],''],##strenght [playerEntry['agility_rating'],''],##agility [playerEntry['awareness_rating'],''],##awareness [playerEntry['throwPower_rating'],''],##throw_power [str(throwAccuracy),''],##throw_accuracy [playerEntry['kickPower_rating'],''],##kick_power [playerEntry['kickAccuracy_rating'],''],##kick_accuracy [playerEntry['passBlock_rating'],''],##pass_block [playerEntry['runBlock_rating'],''],##run_block [playerEntry['catching_rating'],''],##catch [playerEntry['carrying_rating'],''],##carrying [playerEntry['bCVision_rating'],''],##bc_vision [playerEntry['injury_rating'],''],##injury [playerEntry['toughness_rating'],''],##toughness [playerEntry['stamina_rating'],''],##stamina [str(routeRunning),''],##route_running [playerEntry['age'],''],##experience [playerEntry['yearsPro'],''],##age ]) return [sql.returnStatement()]
yolo_target_errors_list.extend(yolo_target_errors) outliers_unet = findOutliers(unet_target_errors_list, 2) outliers_yolo = findOutliers(yolo_target_errors_list, 2) outliers_unet_ratio = len(outliers_unet) / len(unet_target_errors_list) outliers_yolo_ratio = len(outliers_yolo) / len(yolo_target_errors_list) print('\n======== Summary ==========') print(f'Using device: {device}') print(f'Dataset - {opt.dataset_name}: {image_folder}') print(f'Total samples: {len(image_files)}') print(f'Model Weights: ') print(f'\t- unet: {unet_path}') print(f'\t- yolo: {yolo_path}') print('outliers_unet:') print(outliers_unet) print('outliers_yolo:') print(outliers_yolo) print(f'Average prediction speed/time (s): ') print('\t- unet: {:.4f}'.format(statistics.mean(unet_infer_time_list))) print('\t- yolo: {:.4f}'.format(statistics.mean(yolo_infer_time_list))) print(f'Average centroid prediction error: ') print('\t- unet: {:.5f}'.format(statistics.mean(unet_target_errors_list))) print('\t- yolo: {:.5f}'.format(statistics.mean(yolo_target_errors_list))) print('Outliers ratio of centroid prediction errors: ') print('\t- unet: {}/{} = {:.5f}'.format(len(outliers_unet), len(unet_target_errors_list), outliers_unet_ratio)) print('\t- yolo: {}/{} = {:.5f}'.format(len(outliers_yolo), len(yolo_target_errors_list), outliers_yolo_ratio))
bet9, earnings9, gains9 = winlimitim(i, bet9, earnings9, gains9, j9) if bet9 > betlimit: bet9, gains9 = 1, 0 data9.append(earnings9) bet0, earnings0, gains0 = winlimitim(i, bet0, earnings0, gains0, j0) if bet0 > betlimit: bet0, gains0 = 1, 0 data0.append(earnings0) if i != 0: datam.append(i) a = 100 * mean(datam) ends1.append(data1[-1]) mins1.append(min(data1)) maxs1.append(max(data1)) ends2.append(data2[-1]) mins2.append(min(data2)) maxs2.append(max(data2)) ends3.append(data3[-1]) mins3.append(min(data3)) maxs3.append(max(data3)) ends4.append(data4[-1]) mins4.append(min(data4)) maxs4.append(max(data4)) ends5.append(data5[-1]) mins5.append(min(data5))
# Print episode number print('Episode ' + str(i_episode) + ' out of ' + str(num_episodes)) # Perform a step of optimization optimize_model() # Update the target network, copying all weights and biases in DQN if i_episode % TARGET_UPDATE == 0: target_net.load_state_dict(policy_net.state_dict()) print('Complete') # Print statistics on how the games went wins = sum([comp_scores[i] < user_scores[i] for i in range(len(comp_scores))]) user_average = statistics.mean(user_scores) standard_deviation = statistics.stdev(user_scores) vert = np.array(user_scores).reshape((-1, 1)) horiz = np.array(range(len(user_scores))).reshape((-1, 1)) model = LinearRegression().fit(horiz, vert) print('intercept:', model.intercept_) print('slope:', model.coef_) print("AI won " + str(wins) + " games out of " + str(len(user_scores))) print("AI average was " + str(user_average)) print("AI stdev was " + str(standard_deviation)) print(user_scores) # Save Model torch.save(policy_net.state_dict(), 'state_dict_final.pyt')
from glob import glob from PIL import Image from statistics import mean import os dir = "./train" folders = glob(os.path.join(dir, "*")) height, width = [], [] for folder in folders: images = glob(os.path.join(folder, "*")) for image in images: img = Image.open(image) width.append(img.size[0]) height.append(img.size[1]) print(folder.split("/")[-1] + " done") print("average height is : " + str(mean(height))) print("average width is : " + str(mean(width)))
# -*- coding: utf-8 -*- """ Created on Thu Sep 12 14:31:45 2019 @author: agnib """ from statistics import mean frenz = [ "Rohit", "Rahul", "Rohan", "Rini", "Ronit", "Rakesh", "Roshan", "Rupert" ] height = [1.56, 2.0, 1.65, 1.87, 1.43, 1.98, 1.66] maxheight = max(height) maxheightindex = height.index(maxheight) name = frenz[maxheightindex] print("Max Height : ", name, maxheight) minheight = min(height) minheightindex = height.index(minheight) name2 = frenz[minheightindex] print("Min Height : ", name2, minheight) avg = mean(height) print("Average Height : ", avg)
def coefficient_of_determination(ys_orig, ys_line): y_mean_line = [mean(ys_orig) for y in ys_orig] squared_error_reg = squared_error(ys_orig,ys_line) squared_error_y_mean = squared_error(ys_orig,y_mean_line) return 1 - squared_error_reg /squared_error_y_mean
def checkCicleRot(xs,ys): slope = ((mean(xs) * mean(ys)) - (mean(xs * ys))) / ((mean(xs) ** 2) - mean(xs**2)) return slope
def best_fit_slope_and_intercept(xs,ys): m = ((mean(xs)*mean(ys) - (mean(xs*ys)))/((mean(xs)*mean(xs))-(mean(xs*xs)))) b = mean(ys)- m*mean(xs) return m,b
def zeroCentralisation(features): # meanValue = sum(features) / len(features) meanValue = mean(features) centeredFeatures = [feat - meanValue for feat in features] return centeredFeatures