def acf_pacf_plot(series, lags=50, figsize=(10, 10)): fig, axes = plt.subplots(nrows=2, ncols=1, figsize=figsize) plotting.plot_acf(series, lags, ax=axes[0]) axes[0].set_title('Autocorrelation (ACF)') plotting.plot_acf(series, lags, ax=axes[1], partial=True) axes[1].set_title('Partial autocorrelation (PACF)')
def acf_pacf_plot(series, lags=50, figsize=(10,10)): fig, axes = plt.subplots(nrows=2, ncols=1, figsize=figsize) plotting.plot_acf(series, lags, ax=axes[0]) axes[0].set_title('Autocorrelation (ACF)') plotting.plot_acf(series, lags, ax=axes[1], partial=True) axes[1].set_title('Partial autocorrelation (PACF)')
return out def simulate_76(pi=0.9, phi=0.9, v=1, T=5000): rv = np.sqrt(v) s = v / (1 - phi**2) root_s = np.sqrt(s) x = 1 out = np.empty(T) for t in xrange(T): flip = np.random.binomial(1, pi) if flip: out[t] = x = phi * x + randn() * rv else: out[t] = x = randn() * root_s return out if __name__ == '__main__': sim = simulate_76(pi=1, T=10000) print acf(sim, nlags=10) plotting.plot_acf(sim) plt.show() yenusd = np.loadtxt('statlib/data/japan-usa1000.txt', delimiter=',') ukusd = np.loadtxt('statlib/data/uk-usa1000.txt', delimiter=',')
def plot_acf(self, lags=50, partial=True): plotting.plot_acf(self.data, lags, partial=partial)