def test_pointbiserialr(self): "Testing pointbiserialr" data1 = [self.PB, self.APB] data2 = [self.L, self.A] results = (0.8627635262664034, 9.8591235557031489e-007) i = 0 for d in data1: self.assertEquals(stats.pointbiserialr(d, data2[i])[i], results[i]) i += 1
def test_pointbiserialr(self): "Testing pointbiserialr" data1 = [ self.PB, self.APB ] data2 = [ self.L, self.A ] results = (0.8627635262664034, 9.8591235557031489e-007) i = 0 for d in data1: self.assertEquals( stats.pointbiserialr( d, data2[i] )[i], results[i] ) i += 1
apb = N.array(pb) print('paired:') #stats.paired(l,m) #stats.paired(a,b) print() print() print('pearsonr:') print(stats.pearsonr(l, m)) print(stats.pearsonr(a, b)) print('spearmanr:') print(stats.spearmanr(l, m)) print(stats.spearmanr(a, b)) print('pointbiserialr:') print(stats.pointbiserialr(pb, l)) print(stats.pointbiserialr(apb, a)) print('kendalltau:') print(stats.kendalltau(l, m)) print(stats.kendalltau(a, b)) print('linregress:') print(stats.linregress(l, m)) print(stats.linregress(a, b)) print('\nINFERENTIAL') print('ttest_1samp:') print(stats.ttest_1samp(l, 12)) print(stats.ttest_1samp(a, 12)) print('ttest_ind:') print(stats.ttest_ind(l, m)) print(stats.ttest_ind(a, b))
def evaluate( self, *args, **params): return _stats.pointbiserialr(*args, **params)
apb = N.array(pb) print 'paired:' #stats.paired(l,m) #stats.paired(a,b) print print print 'pearsonr:' print stats.pearsonr(l,m) print stats.pearsonr(a,b) print 'spearmanr:' print stats.spearmanr(l,m) print stats.spearmanr(a,b) print 'pointbiserialr:' print stats.pointbiserialr(pb,l) print stats.pointbiserialr(apb,a) print 'kendalltau:' print stats.kendalltau(l,m) print stats.kendalltau(a,b) print 'linregress:' print stats.linregress(l,m) print stats.linregress(a,b) print '\nINFERENTIAL' print 'ttest_1samp:' print stats.ttest_1samp(l,12) print stats.ttest_1samp(a,12) print 'ttest_ind:' print stats.ttest_ind(l,m) print stats.ttest_ind(a,b)
print stats.apearsonr(array(x), array(y)) print "\n\nSpearman's r" x = [4, 1, 9, 8, 3, 5, 6, 2, 7] y = [3, 2, 8, 6, 5, 4, 7, 1, 9] print '\nSHOULD BE +0.85 on the dot (N=9) ... Basic Stats 1st ed, p.193' print stats.spearmanr(x, y) print stats.aspearmanr(array(x), array(y)) print '\n\nPoint-Biserial r' gender = [1, 1, 1, 1, 2, 2, 2, 2, 2, 2] score = [35, 38, 41, 40, 60, 65, 65, 68, 68, 64] print '\nSHOULD BE +0.981257 (N=10) ... Basic Stats 1st ed, p.197' print stats.pointbiserialr(gender, score) print stats.apointbiserialr(array(gender), array(score)) print '\n\nLinear Regression' x = [1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4] y = [2, 4, 4, 6, 2, 4, 7, 8, 6, 8, 7] print '\nSHOULD BE 1.44, 1.47, 0.736, ???, 1.42 (N=11)... Basic Stats 1st ed, p.211-2' print stats.linregress(x, y) print stats.alinregress(array(x), array(y)) print '\n\nChi-Square' fo = [10, 40] print '\nSHOULD BE 18.0, <<<0.01 (df=1) ... Basic Stats 1st ed. p.457' print stats.chisquare(fo)
print "\n\nSpearman's r" x = [4,1,9,8,3,5,6,2,7] y = [3,2,8,6,5,4,7,1,9] print '\nSHOULD BE +0.85 on the dot (N=9) ... Basic Stats 1st ed, p.193' print stats.spearmanr(x,y) print stats.aspearmanr(array(x),array(y)) print '\n\nPoint-Biserial r' gender = [1,1,1,1,2,2,2,2,2,2] score = [35, 38, 41, 40, 60, 65, 65, 68, 68, 64] print '\nSHOULD BE +0.981257 (N=10) ... Basic Stats 1st ed, p.197' print stats.pointbiserialr(gender,score) print stats.apointbiserialr(array(gender),array(score)) print '\n\nLinear Regression' x = [1,1,2,2,2,3,3,3,4,4,4] y = [2,4,4,6,2,4,7,8,6,8,7] print '\nSHOULD BE 1.44, 1.47, 0.736, ???, 1.42 (N=11)... Basic Stats 1st ed, p.211-2' print stats.linregress(x,y) print stats.alinregress(array(x),array(y)) print '\n\nChi-Square' fo = [10,40] print '\nSHOULD BE 18.0, <<<0.01 (df=1) ... Basic Stats 1st ed. p.457'
apb = N.array(pb) print 'paired:' #stats.paired(l,m) #stats.paired(a,b) print print print 'pearsonr:' print stats.pearsonr(l, m) print stats.pearsonr(a, b) print 'spearmanr:' print stats.spearmanr(l, m) print stats.spearmanr(a, b) print 'pointbiserialr:' print stats.pointbiserialr(pb, l) print stats.pointbiserialr(apb, a) print 'kendalltau:' print stats.kendalltau(l, m) print stats.kendalltau(a, b) print 'linregress:' print stats.linregress(l, m) print stats.linregress(a, b) print '\nINFERENTIAL' print 'ttest_1samp:' print stats.ttest_1samp(l, 12) print stats.ttest_1samp(a, 12) print 'ttest_ind:' print stats.ttest_ind(l, m) print stats.ttest_ind(a, b)