def test_loggamma(): #'Results for expgamma' loggammaexpg = LogTransf_gen(stats.gamma) cdftr = loggammaexpg._cdf(1,10) cdfst = stats.loggamma.cdf(1,10) assert_almost_equal(cdfst, cdftr, 14) cdftr = loggammaexpg._cdf(2,15) cdfst = stats.loggamma.cdf(2,15) assert_almost_equal(cdfst, cdftr, 14)
def test_loggamma(): #'Results for expgamma' loggammaexpg = LogTransf_gen(stats.gamma) cdftr = loggammaexpg._cdf(1, 10) cdfst = stats.loggamma.cdf(1, 10) assert_almost_equal(cdfst, cdftr, 14) cdftr = loggammaexpg._cdf(2, 15) cdfst = stats.loggamma.cdf(2, 15) assert_almost_equal(cdfst, cdftr, 14)
def __init__(self): self.dist = LogTransf_gen(stats.gamma) self.trargs = (10, ) self.trkwds = {} self.statsdist = stats.loggamma self.stargs = (10, ) self.stkwds = {}
def examples_transf(): ##lognormal = ExpTransf(a=0.0, xa=-10.0, name = 'Log transformed normal') ##print lognormal.cdf(1) ##print stats.lognorm.cdf(1,1) ##print lognormal.stats() ##print stats.lognorm.stats(1) ##print lognormal.rvs(size=10) print 'Results for lognormal' lognormalg = ExpTransf_gen(stats.norm, a=0, name = 'Log transformed normal general') print lognormalg.cdf(1) print stats.lognorm.cdf(1,1) print lognormalg.stats() print stats.lognorm.stats(1) print lognormalg.rvs(size=5) ##print 'Results for loggamma' ##loggammag = ExpTransf_gen(stats.gamma) ##print loggammag._cdf(1,10) ##print stats.loggamma.cdf(1,10) print 'Results for expgamma' loggammaexpg = LogTransf_gen(stats.gamma) print loggammaexpg._cdf(1,10) print stats.loggamma.cdf(1,10) print loggammaexpg._cdf(2,15) print stats.loggamma.cdf(2,15) # this requires change in scipy.stats.distribution #print loggammaexpg.cdf(1,10) print 'Results for loglaplace' loglaplaceg = LogTransf_gen(stats.laplace) print loglaplaceg._cdf(2) print stats.loglaplace.cdf(2,1) loglaplaceexpg = ExpTransf_gen(stats.laplace) print loglaplaceexpg._cdf(2) stats.loglaplace.cdf(3,3) #0.98148148148148151 loglaplaceexpg._cdf(3,0,1./3)
def examples_transf(): ##lognormal = ExpTransf(a=0.0, xa=-10.0, name = 'Log transformed normal') ##print(lognormal.cdf(1)) ##print(stats.lognorm.cdf(1,1)) ##print(lognormal.stats()) ##print(stats.lognorm.stats(1)) ##print(lognormal.rvs(size=10)) print('Results for lognormal') lognormalg = ExpTransf_gen(stats.norm, a=0, name = 'Log transformed normal general') print(lognormalg.cdf(1)) print(stats.lognorm.cdf(1,1)) print(lognormalg.stats()) print(stats.lognorm.stats(1)) print(lognormalg.rvs(size=5)) ##print('Results for loggamma') ##loggammag = ExpTransf_gen(stats.gamma) ##print(loggammag._cdf(1,10)) ##print(stats.loggamma.cdf(1,10)) print('Results for expgamma') loggammaexpg = LogTransf_gen(stats.gamma) print(loggammaexpg._cdf(1,10)) print(stats.loggamma.cdf(1,10)) print(loggammaexpg._cdf(2,15)) print(stats.loggamma.cdf(2,15)) # this requires change in scipy.stats.distribution #print(loggammaexpg.cdf(1,10)) print('Results for loglaplace') loglaplaceg = LogTransf_gen(stats.laplace) print(loglaplaceg._cdf(2)) print(stats.loglaplace.cdf(2,1)) loglaplaceexpg = ExpTransf_gen(stats.laplace) print(loglaplaceexpg._cdf(2)) stats.loglaplace.cdf(3,3) #0.98148148148148151 loglaplaceexpg._cdf(3,0,1./3)