def weights(t): #must accept one arguement, even though it is not used here s = KaplanMeier(dta, 0, censoring=2) s.fit() s = s.results[0][0] s = s * (1 - s) return s
def weights(t): #must accept one arguement, even though it is not used here s = KaplanMeier(dta,0,censoring=2) s.fit() s = s.results[0][0] s = s * (1 - s) return s
def competing_risk(data, outcome, tt_outcome, use_kmf): """Gets the probability of the event for all subjects Notes ----- This is used for the net benefit associated with treating all patients Parameters ---------- data : pd.DataFrame the dataset to analyze outcome : str the column in `data` with outcome values tt_outcome : str the column in `data` with times to the outcome values use_kmf : bool the algorithm to use for fitting the survival curve if `True`, use KaplanMeier; if `False`, use cumulative increase Returns ------- """ raise NotImplementedError() #construct a new dataframe of just the outcome and tt_outcome columns df = pd.DataFrame({outcome: data[outcome].values, tt_outcome: data[tt_outcome].values}) if use_kmf: from statsmodels.sandbox.survival2 import KaplanMeier kmf = KaplanMeier(df.values, 1) kmf.fit() else: # use cuminc pass
import statsmodels.api as sm import matplotlib.pyplot as plt import numpy as np from statsmodels.sandbox.survival2 import KaplanMeier #Getting the strike data as an array dta = sm.datasets.strikes.load(as_pandas=False) print('basic data') print('\n') dta = list(dta.values()[-1]) print(dta[lrange(5), :]) print('\n') #Create the KaplanMeier object and fit the model km = KaplanMeier(dta, 0) km.fit() #show the results km.plot() print('basic model') print('\n') km.summary() print('\n') #Mutiple survival curves km2 = KaplanMeier(dta, 0, exog=1) km2.fit() print('more than one curve')
import statsmodels.api as sm import matplotlib.pyplot as plt import numpy as np from statsmodels.sandbox.survival2 import KaplanMeier #Getting the strike data as an array dta = sm.datasets.strikes.load() print 'basic data' print '\n' dta = dta.values()[-1] print dta[range(5),:] print '\n' #Create the KaplanMeier object and fit the model km = KaplanMeier(dta,0) km.fit() #show the results km.plot() print 'basic model' print '\n' km.summary() print '\n' #Mutiple survival curves km2 = KaplanMeier(dta,0,exog=1) km2.fit() print 'more than one curve'