예제 #1
0
def test_eval_measures():
    #mainly regression tests

    x = np.arange(20).reshape(4,5)
    y = np.ones((4,5))
    assert_equal(iqr(x, y), 5*np.ones(5))
    assert_equal(iqr(x, y, axis=1), 2*np.ones(4))
    assert_equal(iqr(x, y, axis=None), 9)

    assert_equal(mse(x, y),
                 np.array([  73.5,   87.5,  103.5,  121.5,  141.5]))
    assert_equal(mse(x, y, axis=1),
                 np.array([   3.,   38.,  123.,  258.]))

    assert_almost_equal(rmse(x, y),
                        np.array([  8.5732141 ,   9.35414347,  10.17349497,
                                   11.02270384,  11.89537725]))
    assert_almost_equal(rmse(x, y, axis=1),
                        np.array([  1.73205081,   6.164414,
                                   11.09053651,  16.0623784 ]))

    assert_equal(maxabs(x, y),
                 np.array([ 14.,  15.,  16.,  17.,  18.]))
    assert_equal(maxabs(x, y, axis=1),
                 np.array([  3.,   8.,  13.,  18.]))

    assert_equal(meanabs(x, y),
                 np.array([  7. ,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(meanabs(x, y, axis=1),
                 np.array([  1.4,   6. ,  11. ,  16. ]))
    assert_equal(meanabs(x, y, axis=0),
                 np.array([  7. ,   7.5,   8.5,   9.5,  10.5]))

    assert_equal(medianabs(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(medianabs(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(bias(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(bias(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(medianbias(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(medianbias(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(vare(x, y),
                 np.array([ 31.25,  31.25,  31.25,  31.25,  31.25]))
    assert_equal(vare(x, y, axis=1),
                 np.array([ 2.,  2.,  2.,  2.]))
예제 #2
0
def test_eval_measures():
    #mainly regression tests

    x = np.arange(20).reshape(4,5)
    y = np.ones((4,5))
    assert_equal(iqr(x, y), 5*np.ones(5))
    assert_equal(iqr(x, y, axis=1), 2*np.ones(4))
    assert_equal(iqr(x, y, axis=None), 9)

    assert_equal(mse(x, y),
                 np.array([  73.5,   87.5,  103.5,  121.5,  141.5]))
    assert_equal(mse(x, y, axis=1),
                 np.array([   3.,   38.,  123.,  258.]))

    assert_almost_equal(rmse(x, y),
                        np.array([  8.5732141 ,   9.35414347,  10.17349497,
                                   11.02270384,  11.89537725]))
    assert_almost_equal(rmse(x, y, axis=1),
                        np.array([  1.73205081,   6.164414,
                                   11.09053651,  16.0623784 ]))

    assert_equal(maxabs(x, y),
                 np.array([ 14.,  15.,  16.,  17.,  18.]))
    assert_equal(maxabs(x, y, axis=1),
                 np.array([  3.,   8.,  13.,  18.]))

    assert_equal(meanabs(x, y),
                 np.array([  7. ,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(meanabs(x, y, axis=1),
                 np.array([  1.4,   6. ,  11. ,  16. ]))
    assert_equal(meanabs(x, y, axis=0),
                 np.array([  7. ,   7.5,   8.5,   9.5,  10.5]))

    assert_equal(medianabs(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(medianabs(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(bias(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(bias(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(medianbias(x, y),
                 np.array([  6.5,   7.5,   8.5,   9.5,  10.5]))
    assert_equal(medianbias(x, y, axis=1),
                 np.array([  1.,   6.,  11.,  16.]))

    assert_equal(vare(x, y),
                 np.array([ 31.25,  31.25,  31.25,  31.25,  31.25]))
    assert_equal(vare(x, y, axis=1),
                 np.array([ 2.,  2.,  2.,  2.]))
def test_eval_measures():
    # mainly regression tests
    x = np.arange(20).reshape(4, 5)
    y = np.ones((4, 5))

    assert_equal(iqr(x, y), 5 * np.ones(5))
    assert_equal(iqr(x, y, axis=1), 2 * np.ones(4))
    assert_equal(iqr(x, y, axis=None), 9)

    assert_equal(mse(x, y), np.array([73.5, 87.5, 103.5, 121.5, 141.5]))
    assert_equal(mse(x, y, axis=1), np.array([3.0, 38.0, 123.0, 258.0]))

    assert_almost_equal(
        rmse(x, y),
        np.array(
            [8.5732141, 9.35414347, 10.17349497, 11.02270384, 11.89537725]
        ),
    )
    assert_almost_equal(
        rmse(x, y, axis=1),
        np.array([1.73205081, 6.164414, 11.09053651, 16.0623784]),
    )

    err = x - y
    loc = np.where(x != 0)
    err[loc] /= x[loc]
    err[np.where(x == 0)] = np.nan
    expected = np.sqrt(np.nanmean(err ** 2, 0) * 100)
    assert_almost_equal(rmspe(x, y), expected)
    err[np.where(np.isnan(err))] = 0.0
    expected = np.sqrt(np.nanmean(err ** 2, 0) * 100)
    assert_almost_equal(rmspe(x, y, zeros=0), expected)

    assert_equal(maxabs(x, y), np.array([14.0, 15.0, 16.0, 17.0, 18.0]))
    assert_equal(maxabs(x, y, axis=1), np.array([3.0, 8.0, 13.0, 18.0]))

    assert_equal(meanabs(x, y), np.array([7.0, 7.5, 8.5, 9.5, 10.5]))
    assert_equal(meanabs(x, y, axis=1), np.array([1.4, 6.0, 11.0, 16.0]))
    assert_equal(meanabs(x, y, axis=0), np.array([7.0, 7.5, 8.5, 9.5, 10.5]))

    assert_equal(medianabs(x, y), np.array([6.5, 7.5, 8.5, 9.5, 10.5]))
    assert_equal(medianabs(x, y, axis=1), np.array([1.0, 6.0, 11.0, 16.0]))

    assert_equal(bias(x, y), np.array([6.5, 7.5, 8.5, 9.5, 10.5]))
    assert_equal(bias(x, y, axis=1), np.array([1.0, 6.0, 11.0, 16.0]))

    assert_equal(medianbias(x, y), np.array([6.5, 7.5, 8.5, 9.5, 10.5]))
    assert_equal(medianbias(x, y, axis=1), np.array([1.0, 6.0, 11.0, 16.0]))

    assert_equal(vare(x, y), np.array([31.25, 31.25, 31.25, 31.25, 31.25]))
    assert_equal(vare(x, y, axis=1), np.array([2.0, 2.0, 2.0, 2.0]))
예제 #4
0
def gen_results(d):
    #exp = d.query('Trial > 10 and Time > 5')
    exp = d.query('Time > 5')

    error = exp.groupby(('Day', 'Subject', 'Trial')).ae.mean().reset_index()
    error.columns = ['Day', 'Subject', 'Trial', 'AbsoluteError']
    rms = exp.groupby(
        ('Day', 'Subject',
         'Trial')).apply(lambda x: rmse(x.y, x.yg)).reset_index()
    rms.columns = ['Day', 'Subject', 'Trial', 'RMSE']
    var = exp.groupby(
        ('Day', 'Subject',
         'Trial')).apply(lambda x: vare(x.y, x.yg)).reset_index()
    var.columns = ['Day', 'Subject', 'Trial', 'VARE']
    crossings = exp.groupby(
        ('Day', 'Subject',
         'Trial')).apply(lambda x: len(cross(x.e))).reset_index()
    crossings.columns = ['Day', 'Subject', 'Trial', 'Crossings']

    rt = find_response_times(exp, trials)
    response_time = rt.groupby(
        ('Day', 'Subject', 'Trial')).mean().ResponseTime.reset_index()
    td = exp.groupby(('Day', 'Subject', 'Trial')).apply(
        lambda x: recover_shift(x['Time'], x['y'], x['yg'])).reset_index()
    time_delay = td.groupby(
        ('Day', 'Subject', 'Trial')).mean()[0].reset_index().abs()
    time_delay.columns = ['Day', 'Subject', 'Trial', 'LagTime']
    #entropy = generate_entropy_results(exp)

    #res = error.merge(rms).merge(var).merge(crossings).merge(response_time, how='outer').merge(time_delay).merge(entropy)
    res = error.merge(rms).merge(var).merge(crossings).merge(
        response_time, how='outer').merge(time_delay)
    res['Feedback'] = res.Subject % 2 == 1
    res = res.merge(trials[['Trial']])
    res = res.sort(['Day', 'Subject', 'Trial'])
    #res['SecondaryTask'] = res['Secondary_Task']
    res = res[[
        'Day', 'Subject', 'Trial', 'AbsoluteError', 'RMSE', 'VARE',
        'ResponseTime', 'LagTime', 'Crossings', 'Feedback'
    ]]
    res = res.reset_index(drop=True)
    res['ID'] = (res.Day - 1) * res.Trial.max() + res.Trial

    return res