def calculate(cls): cls.g = g = GroupSorted(cls.gind) # pylint: disable-msg=W0201 cls.alla = [ (lag, sw.lagged_groups(cls.x, lag, g.groupidx)) # pylint: disable-msg=W0201 for lag in range(5) ]
def calculate(self): self.g = g = GroupSorted(self.gind) # pylint: disable-msg=W0201 self.alla = [ (lag, sw.lagged_groups(self.x, lag, g.groupidx)) # pylint: disable-msg=W0201 for lag in range(5) ]
def __init__(self, endog, exog, group, sigma_i=None): self.group = GroupSorted(group) self.n_groups = self.group.n_groups #self.nobs_group = #list for unbalanced? nobs_i = len(endog) / self.n_groups #endog might later not be an ndarray #balanced only for now, #which is a requirement anyway in this case (full cov) #needs to change for parameterized sigma_i # if sigma_i is None: sigma_i = np.eye(int(nobs_i)) self.cholsigmainv_i = np.linalg.cholesky(np.linalg.pinv(sigma_i)).T #super is taking care of endog, exog and sigma super(self.__class__, self).__init__(endog, exog, sigma=None)
def __init__(self, endog, exog, group): self.endog = endog self.exog = exog self.group = GroupSorted(group) self.n_groups = self.group.n_groups
def calculate(self): self.g = g = GroupSorted(self.gind) self.alla = [(lag, sw.lagged_groups(self.x, lag, g.groupidx)) for lag in range(5)]