예제 #1
0
def get_trend(tr_dict, return_fitted=False):
    """
    method of trend calculation, which fit holt
    which returns also g_trend (i.e. the distance between y_holt - y_trajectory)

    :param tr_dict:
    :param return_fitted:
    :return:
    """
    trend_dict = OrderedDict()
    res_dict = None
    if return_fitted:
        res_dict = OrderedDict()
    for patient, values in tr_dict.items():
        fitted = Holt(values, damped_trend=True).fit(optimized=True, smoothing_level=0.7)  # type: HoltWintersResults
        trend_dict[patient] = fitted.predict(start=0, end=len(values)-1)
        if return_fitted:
            res_dict[patient] = fitted.summary()

    return trend_dict, res_dict
예제 #2
0

### Simple Exponential Method

ses_model = SimpleExpSmoothing(Train["Sales"]).fit(smoothing_level=0.9)
pred_ses = ses_model.predict(start=Test.index[0], end=Test.index[-1])
MAPE(pred_ses, Test.Sales)

### Holt method

# Holt method
hw_model = Holt(Train["Sales"]).fit(smoothing_level=0.8, smoothing_trend=0.2)
pred_hw = hw_model.predict(start=Test.index[0], end=Test.index[-1])
MAPE(pred_hw, Test.Sales)

hw_model.summary()
### Holts winter exponential smoothing with additive seasonality and additive trend

hwe_model_add_add = ExponentialSmoothing(
    Train["Sales"], seasonal="add", trend="add",
    seasonal_periods=4).fit()  #add the trend to the model
pred_hwe_add_add = hwe_model_add_add.predict(start=Test.index[0],
                                             end=Test.index[-1])
MAPE(pred_hwe_add_add, Test.Sales)
hwe_model_add_add.summary()
### Holts winter exponential smoothing with multiplicative seasonality and additive trend

hwe_model_mul_add = ExponentialSmoothing(Train["Sales"],
                                         seasonal="mul",
                                         trend="add",
                                         seasonal_periods=4).fit()
예제 #3
0
#forecasting/ predicting next 19 periods
births_pred = births_ses.forecast(steps=19)
print(births_pred)

#Plot actual and forecast
plt.plot(births)
plt.plot(births_pred)
plt.legend(['Actual', 'Forecast - SimpleExpSmoothing'],
           bbox_to_anchor=(1, 1),
           loc=2)
plt.show()

#Model with double exponential smoothing
from statsmodels.tsa.holtwinters import Holt
births_holt = Holt(births).fit()
births_holt.summary()
'''                              Holt Model Results                              
==============================================================================
Dep. Variable:                 births   No. Observations:                  168
Model:                           Holt   SSE                            280.134
Optimized:                       True   AIC                             93.899
Trend:                       Additive   BIC                            106.395
Seasonal:                        None   AICC                            94.421
Seasonal Periods:                None   Date:                 Fri, 26 Mar 2021
Box-Cox:                        False   Time:                         00:23:58
Box-Cox Coeff.:                  None                                         
==============================================================================
                       coeff                 code              optimized      
------------------------------------------------------------------------------
smoothing_level            0.4354824                alpha                 True
smoothing_trend           1.8914e-12                 beta                 True