예제 #1
0
def var_loglike(resid, omega, nobs):
    r"""
    Returns the value of the VAR(p) log-likelihood.

    Parameters
    ----------
    resid : ndarray (T x K)
    omega : ndarray
        Sigma hat matrix.  Each element i,j is the average product of the
        OLS residual for variable i and the OLS residual for variable j or
        np.dot(resid.T,resid)/nobs.  There should be no correction for the
        degrees of freedom.
    nobs : int

    Returns
    -------
    llf : float
        The value of the loglikelihood function for a VAR(p) model

    Notes
    -----
    The loglikelihood function for the VAR(p) is

    .. math::

        -\left(\frac{T}{2}\right)
        \left(\ln\left|\Omega\right|-K\ln\left(2\pi\right)-K\right)
    """
    logdet = util.get_logdet(np.asarray(omega))
    neqs = len(omega)
    part1 = - (nobs * neqs / 2) * np.log(2 * np.pi)
    part2 = - (nobs / 2) * (logdet + neqs)
    return part1 + part2
예제 #2
0
    def info_criteria(self):
        "information criteria for lagorder selection"
        nobs = self.nobs
        neqs = self.neqs
        lag_order = self.k_ar
        free_params = lag_order * neqs ** 2 + neqs * self.k_trend

        ld = util.get_logdet(self.sigma_u_mle)

        # See Lutkepohl pp. 146-150

        aic = ld + (2.0 / nobs) * free_params
        bic = ld + (np.log(nobs) / nobs) * free_params
        hqic = ld + (2.0 * np.log(np.log(nobs)) / nobs) * free_params
        fpe = ((nobs + self.df_model) / self.df_resid) ** neqs * np.exp(ld)

        return {"aic": aic, "bic": bic, "hqic": hqic, "fpe": fpe}
예제 #3
0
    def info_criteria(self):
        "information criteria for lagorder selection"
        nobs = self.nobs
        neqs = self.neqs
        lag_order = self.k_ar
        free_params = lag_order * neqs ** 2 + neqs * self.k_trend

        ld = util.get_logdet(self.sigma_u_mle)

        # See Lutkepohl pp. 146-150

        aic = ld + (2. / nobs) * free_params
        bic = ld + (np.log(nobs) / nobs) * free_params
        hqic = ld + (2. * np.log(np.log(nobs)) / nobs) * free_params
        fpe = ((nobs + self.df_model) / self.df_resid) ** neqs * np.exp(ld)

        return {
            'aic' : aic,
            'bic' : bic,
            'hqic' : hqic,
            'fpe' : fpe
            }