from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.tables as tables from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseScannerTable report = Report.create("AppResponse Packets - Search Capture Jobs", hidden_fields=[ 'appresponse_device', 'appresponse_source', 'entire_pcap', 'granularity' ], field_order=['endtime', 'duration']) report.add_section() # Create base table base = AppResponseTable.create(name='ar_bytes', include_filter=True) base.add_column('total_bytes', label='Bytes', iskey=False, extractor='sum_traffic.total_bytes') # Make table = AppResponseScannerTable.create(name='ars', basetable=base) table.add_column('name', "Name", datatype='string') table.add_column('host', "Host", datatype='string') table.add_column('capture_job', "Capture Job", datatype='string') table.add_column('bytes', "Bytes") report.add_widget(tables.TableWidget, table, "AppResponse Capture Jobs Found",
from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.c3 as c3 import steelscript.appfwk.apps.report.modules.tables as tables from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseTimeSeriesTable, \ AppResponseTopNTimeSeriesTable, AppResponseLinkTable topn = 10 report = Report.create("AppResponse SQL Overall") report.add_section() # t1 is used to derive the overall metrics over the duration t1 = AppResponseTable.create('sql-overall', source='sql_summaries') t1.add_column('db_process', 'Client Process Name', datatype='string', iskey=True, extractor='db.process_name') t1.add_column('sql_duration', 'Average Transaction Time', datatype='float', extractor='avg_sql.duration') t1.add_column('sql_packets', 'Average SQL Packets', datatype='float', extractor='avg_sql.packets') # t2 is used to derive the time series metrics values over the duration
import steelscript.appfwk.apps.report.modules.c3 as c3 import steelscript.appfwk.apps.report.modules.tables as tables from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable report = Report.create("AppResponse Packets - TCP Errors", field_order=[ 'endtime', 'duration', 'appresponse_device', 'appresponse_source', 'entire_pcap', 'granularity' ]) report.add_section() # TCP Errors p = AppResponseTable.create('TCPErrors', duration='1 min', granularity='1s', include_files=True) p.add_column('error_type', label='TCP Error Type', iskey=True, datatype='string', extractor='tcp.error_type', alias='tcp.error_type_name') p.add_column('errors', label='TCP Error Count', datatype='integer', sortdesc=True, extractor='sum_tcp.errors') report.add_widget(c3.BarWidget, p, 'TCP Errors', width=6, height=400)
from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.c3 as c3 import steelscript.appfwk.apps.report.modules.tables as tables from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseTimeSeriesTable, \ AppResponseTopNTimeSeriesTable, AppResponseLinkTable topn = 10 report = Report.create("AppResponse ASA Overall") report.add_section() # t1 is used to derive the overall metrics over the duration t1 = AppResponseTable.create('applications-overall', source='aggregates') t1.add_column('app_id', 'App ID', datatype='string', iskey=True, extractor='app.id') t1.add_column('app_name', 'App Name', datatype='string', extractor='app.name') t1.add_column('total_bytes', 'Average Bytes per Second', datatype='float', extractor='avg_traffic.total_bytes_ps') t1.add_column('srv_response_time', 'Average Server Response Time (seconds)', datatype='float', extractor='avg_tcp.srv_response_time') t1.add_column('usr_response_time', 'Average User Response Time (seconds)', datatype='float', extractor='avg_tcp.user_response_time') # t2 is used to derive the time series metrics values over the duration t2 = AppResponseTable.create('applications-overall-ts', source='aggregates') # Add this time key column is the main differentiator between t2 and t1 t2.copy_columns(t1)
from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable from steelscript.appfwk.apps.datasource.modules.analysis import \ FocusedAnalysisTable report = Report.create("AppResponse Packets - Microburst and TCP Errors", field_order=[ 'endtime', 'duration', 'appresponse_device', 'appresponse_source', 'entire_pcap', 'granularity' ]) report.add_section() # summary microbursts p = AppResponseTable.create('MicroburstsTime', duration='1 min', granularity='1s', include_files=True) p.add_column('time', label='Time', iskey=True, datatype='time', extractor='start_time', formatter='formatDateTimeMs') p.add_column('max_microburst_1ms_bytes', label='uBurst 1ms', extractor='max_traffic.microburst_1ms_bytes', units='B') p.add_column('max_microburst_10ms_bytes',
from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.c3 as c3 import steelscript.appfwk.apps.report.modules.tables as tables from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseTimeSeriesTable, \ AppResponseTopNTimeSeriesTable, AppResponseLinkTable topn = 10 report = Report.create("AppResponse UC Overall") report.add_section() # t1 is used to derive the overall metrics over the duration t1 = AppResponseTable.create('uc-overall', source='aggregates') t1.add_column('media_type', 'Media Type ID', datatype='string', iskey=True, extractor='rtp.media_type') t1.add_column('media_type_name', 'Media Type Name', datatype='string', extractor='rtp.media_type_name') t1.add_column('packets', 'Number of RTP Packets', datatype='integer', extractor='sum_rtp.packets') t1.add_column('bytes', 'Number of RTP Bytes', datatype='integer', extractor='sum_rtp.traffic_bytes') # t2 is used to derive the time series metrics values over the duration t2 = AppResponseTable.create('uc-overall-ts', source='aggregates') # Add this time key column is the main differentiator between t2 and t1 t2.copy_columns(t1) t2.add_column('start_time', 'Time', datatype='time', iskey=True, extractor='start_time')
import steelscript.appfwk.apps.report.modules.c3 as c3 import steelscript.appfwk.apps.report.modules.tables as tables from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable report = Report.create("AppResponse Packets - DNS", field_order=[ 'endtime', 'duration', 'appresponse_device', 'appresponse_source', 'entire_pcap', 'granularity' ]) report.add_section() # DNS Queries Over time name = 'DNS Queries and Response Time Over Time' p = AppResponseTable.create(name, include_files=True) p.add_column('time', label='Time', iskey=True, datatype='time', extractor='start_time', formatter='formatDateTimeMs') p.add_column('dns_count', label='DNS Query Count', datatype='integer', extractor='sum_dns.query.count') p.add_column('dns_response_time', label='Avg DNS Response Time (ns)', units='ms', extractor='avg_dns.response_time')
# # This software is licensed under the terms and conditions of the MIT License # accompanying the software ("License"). This software is distributed "AS IS" # as set forth in the License. from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.yui3 as yui3 from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseTimeSeriesTable report = Report.create("AppResponse WTA Time Series") report.add_section() t = AppResponseTable.create('wta-base', source='aggregates') t.add_column('start_time', 'Time', datatype='time', iskey=True, extractor='start_time') t.add_column('page_family_id', 'Web Page Family ID', datatype='string', iskey=True, extractor='web.page.family.id') t.add_column('page_family_name', 'Web Page Family Name', datatype='string', extractor='web.page.family.name') t.add_column('pages',
# Copyright (c) 2017 Riverbed Technology, Inc. # # This software is licensed under the terms and conditions of the MIT License # accompanying the software ("License"). This software is distributed "AS IS" # as set forth in the License. from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.c3 as c3 from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseTimeSeriesTable report = Report.create("AppResponse DB Sessions TimeSeries") report.add_section() t = AppResponseTable.create('db-session-overall', source='dbsession_summaries') t.add_column('start_time', 'Time', datatype='time', iskey=True, extractor='start_time') t.add_column('db_instance', 'DB Instance', datatype='string', iskey=True, extractor='db.instance') t.add_column('active_sessions', 'Concurrent Active DB Sessions', datatype='float', extractor='avg_db.active_sessions') t.add_column('active_time',
# Copyright (c) 2017 Riverbed Technology, Inc. # # This software is licensed under the terms and conditions of the MIT License # accompanying the software ("License"). This software is distributed "AS IS" # as set forth in the License. from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.c3 as c3 from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseTimeSeriesTable report = Report.create("AppResponse SQL TimeSeries") report.add_section() t = AppResponseTable.create('SQL-overall', source='sql_summaries') t.add_column('start_time', 'Time', datatype='time', iskey=True, extractor='start_time') t.add_column('db_process', 'Client Process Name', datatype='string', iskey=True, extractor='db.process_name') t.add_column('sql_duration', 'Transaction Time', datatype='float', extractor='avg_sql.duration') t.add_column('sql_packets',
from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.c3 as c3 import steelscript.appfwk.apps.report.modules.tables as tables from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable report = Report.create("AppResponse Packets", field_order=[ 'endtime', 'duration', 'appresponse_device', 'appresponse_source', 'entire_pcap', 'granularity' ]) report.add_section() p = AppResponseTable.create('network_traffic', include_files=True) p.add_column('time', 'Time', datatype='time', iskey=True, extractor='start_time') p.add_column('network_traffic', 'Network Traffic', datatype='integer', extractor='sum_traffic.network_bytes') report.add_widget(c3.TimeSeriesWidget, p, "Network Traffic (Bytes)", width=12) p = AppResponseTable.create('Traffic by TCP/UDP', include_files=True) p.add_column('time', 'Time', datatype='time',
from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.c3 as c3 import steelscript.appfwk.apps.report.modules.tables as tables from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseTimeSeriesTable, \ AppResponseTopNTimeSeriesTable, AppResponseLinkTable topn = 10 report = Report.create("AppResponse WTA Overall") report.add_section() # t1 is used to derive the overall metrics over the duration t1 = AppResponseTable.create('wta-overall', source='aggregates', sort_col_name='pages', ascending=False) t1.add_column('page_family_id', 'Web Page Family ID', datatype='string', iskey=True, extractor='web.page.family.id') t1.add_column('page_family_name', 'Web Page Family Name', datatype='string', extractor='web.page.family.name') t1.add_column('pages', 'Number of Pages Viewed', datatype='integer', extractor='sum_web.pages') t1.add_column('page_bps',
# Copyright (c) 2017 Riverbed Technology, Inc. # # This software is licensed under the terms and conditions of the MIT License # accompanying the software ("License"). This software is distributed "AS IS" # as set forth in the License. from steelscript.appfwk.apps.report.models import Report import steelscript.appfwk.apps.report.modules.c3 as c3 from steelscript.appresponse.appfwk.datasources.appresponse import \ AppResponseTable, AppResponseTimeSeriesTable report = Report.create("AppResponse ASA Time Series") report.add_section() t = AppResponseTable.create('timeseries-base', source='aggregates') t.add_column('start_time', 'Time', datatype='time', iskey=True, extractor='start_time') t.add_column('app_id', 'App ID', datatype='string', iskey=True, extractor='app.id') t.add_column('app_name', 'App Name', datatype='string', extractor='app.name') t.add_column('srv_response_time', 'Average Server Response Time (seconds)', datatype='float', extractor='avg_tcp.srv_response_time')