예제 #1
0
def ccf_error(ref_counts, ci_counts_0, cs_res_model, rebin_log_factor, meta,
              ps_rms, filter_type="optimal"):
    n_seg = meta['N_SEG']
    n_seconds = meta['NSECONDS']
    dt = meta['DT']
    n_bins = meta['N_BINS']

    seg_ref_counts = np.array(np.split(ref_counts, n_seg))
    seg_ci_counts = np.array(np.split(ci_counts_0, n_seg))
    seg_css = np.array([])
    seg_ccfs = np.array([])
    seg_times = np.arange(0, n_seconds, dt)  # light curve time bins

    for i in range(n_seg):  # for each segment
        # Creating cross spectrum
        seg_ci_lc = Lightcurve(seg_times, seg_ci_counts[i],
                               dt=dt)  # CoI light curve
        seg_ref_lc = Lightcurve(seg_times, seg_ref_counts[i],
                                dt=dt)  # reference band light curve
        seg_cs = Crossspectrum(lc2=seg_ci_lc, lc1=seg_ref_lc, norm='leahy',
                               power_type="absolute")  # cross spectrum
        seg_cs = seg_cs.rebin_log(rebin_log_factor)  # cross spectrum rebinning

        # applying filter
        if filter_type == "optimal":
            cs_filter = Optimal1D(cs_res_model)
            filter_freq = cs_filter(seg_cs.freq)
            filtered_seg_cs_power = filter_freq * np.abs(seg_cs.power)
        else:
            cs_filter = Window1D(cs_res_model)
            filter_freq = cs_filter(seg_cs.freq)
            filtered_seg_cs_power = filter_freq * np.abs(seg_cs.power)

        # calculating normalized ccf
        seg_ccf = ifft(filtered_seg_cs_power)  # inverse FFT
        seg_ccf_real = seg_ccf.real  # real part of ccf
        seg_ccf_real_norm = seg_ccf_real * (
                    2 / n_bins / ps_rms)  # normalisation

        if i == 0:
            seg_css = np.hstack((seg_css, np.array(filtered_seg_cs_power)))
        else:
            seg_css = np.vstack((seg_css, np.array(filtered_seg_cs_power)))
        if i == 0:
            seg_ccfs = np.hstack((seg_ccfs, np.array(seg_ccf_real_norm)))
        else:
            seg_ccfs = np.vstack((seg_ccfs, np.array(seg_ccf_real_norm)))

    # ccf after taking avg
    avg_seg_css = np.average(seg_css, axis=0)  # average of cross spectrum
    avg_seg_ccf = ccf(avg_seg_css, ps_rms, n_bins)

    error = standard_error(seg_ccfs, avg_seg_ccf)
    return error, avg_seg_ccf
예제 #2
0
def test_compute_rms():
    np.random.seed(150)

    amplitude_0 = 200.0
    amplitude_1 = 100.0
    amplitude_2 = 50.0

    x_0_0 = 0.5
    x_0_1 = 2.0
    x_0_2 = 7.5

    fwhm_0 = 0.1
    fwhm_1 = 1.0
    fwhm_2 = 0.5

    whitenoise = 100.0

    model = models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + \
        models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + \
        models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + \
        models.Const1D(whitenoise)

    freq = np.linspace(-10.0, 10.0, 1000)
    p = model(freq)
    noise = np.random.exponential(size=len(freq))

    power = p * noise
    cs = Crossspectrum()
    cs.freq = freq
    cs.power = power
    cs.df = cs.freq[1] - cs.freq[0]
    cs.n = len(freq)
    cs.m = 1

    rms = np.sqrt(np.sum(model(cs.freq) * cs.df)).mean()

    assert rms == spec.compute_rms(cs, model, criteria="all")

    rms_pos = np.sqrt(np.sum(model(cs.freq[cs.freq > 0]) * cs.df)).mean()

    assert rms_pos == spec.compute_rms(cs, model, criteria="posfreq")

    optimal_filter = Window1D(model)
    optimal_filter_freq = optimal_filter(cs.freq)
    filtered_cs_power = optimal_filter_freq * np.abs(model(cs.freq))

    rms = np.sqrt(np.sum(filtered_cs_power * cs.df)).mean()
    assert rms == spec.compute_rms(cs, model, criteria="window")

    with pytest.raises(ValueError):
        spec.compute_rms(cs, model, criteria="filter")
예제 #3
0
    def test_ccf(self):
        # to make testing faster, fitting is not done.
        ref_ps = Powerspectrum(self.ref_lc, norm='abs')

        ci_counts_0 = self.ci_counts[0]
        ci_times = np.arange(0, self.n_seconds * self.n_seg, self.dt)
        ci_lc = Lightcurve(ci_times, ci_counts_0, dt=self.dt)

        # rebinning factor used in `rebin_log`
        rebin_log_factor = 0.4

        acs = AveragedCrossspectrum(lc1=ci_lc,
                                    lc2=self.ref_lc,
                                    segment_size=self.n_seconds,
                                    norm='leahy',
                                    power_type="absolute")
        acs = acs.rebin_log(rebin_log_factor)

        # parest, res = fit_crossspectrum(acs, self.model, fitmethod="CG")
        acs_result_model = self.model

        # using optimal filter
        optimal_filter = Optimal1D(acs_result_model)
        optimal_filter_freq = optimal_filter(acs.freq)
        filtered_acs_power = optimal_filter_freq * np.abs(acs.power)

        # rebinning power spectrum
        new_df = spec.get_new_df(ref_ps, self.n_bins)
        ref_ps_rebinned = ref_ps.rebin(df=new_df)

        # parest, res = fit_powerspectrum(ref_ps_rebinned, self.model)
        ref_ps_rebinned_result_model = self.model

        # calculating rms from power spectrum
        ref_ps_rebinned_rms = spec.compute_rms(ref_ps_rebinned,
                                               ref_ps_rebinned_result_model,
                                               criteria="optimal")

        # calculating normalized ccf
        ccf_norm = spec.ccf(filtered_acs_power, ref_ps_rebinned_rms,
                            self.n_bins)

        # calculating ccf error
        meta = {
            'N_SEG': self.n_seg,
            'NSECONDS': self.n_seconds,
            'DT': self.dt,
            'N_BINS': self.n_bins
        }
        error_ccf, avg_seg_ccf = spec.ccf_error(self.ref_counts,
                                                ci_counts_0,
                                                acs_result_model,
                                                rebin_log_factor,
                                                meta,
                                                ref_ps_rebinned_rms,
                                                filter_type="optimal")

        assert np.all(np.isclose(ccf_norm, avg_seg_ccf, atol=0.01))
        assert np.all(
            np.isclose(error_ccf, np.zeros(shape=error_ccf.shape), atol=0.01))

        # using window function
        tophat_filter = Window1D(acs_result_model)
        tophat_filter_freq = tophat_filter(acs.freq)
        filtered_acs_power = tophat_filter_freq * np.abs(acs.power)

        ref_ps_rebinned_rms = spec.compute_rms(ref_ps_rebinned,
                                               ref_ps_rebinned_result_model,
                                               criteria="window")

        ccf_norm = spec.ccf(filtered_acs_power, ref_ps_rebinned_rms,
                            self.n_bins)

        error_ccf, avg_seg_ccf = spec.ccf_error(self.ref_counts,
                                                ci_counts_0,
                                                acs_result_model,
                                                rebin_log_factor,
                                                meta,
                                                ref_ps_rebinned_rms,
                                                filter_type="window")

        assert np.all(np.isclose(ccf_norm, avg_seg_ccf, atol=0.01))
        assert np.all(
            np.isclose(error_ccf, np.zeros(shape=error_ccf.shape), atol=0.01))