예제 #1
0
def show_fredholm_eigvec_interpolation():
    """
        for ohmic sd   : use 4 point and integral interpolation
        for lorentzian : use simpson and spline interpolation
    """
    t_max = 15
    corr = lac
    corr = oac

    ng_ref = 3501

    _meth_ref = method_kle.get_simpson_weights_times
    _meth_ref = method_kle.get_trapezoidal_weights_times
    _meth_ref = method_kle.get_four_point_weights_times

    t, w = _meth_ref(t_max, ng_ref)

    try:
        with open("test_fredholm_interpolation.dump", 'rb') as f:
            ref_data = pickle.load(f)
    except FileNotFoundError:
        ref_data = {}
    key = (tuple(t), tuple(w), corr.__name__)
    if key in ref_data:
        eigval_ref, evec_ref = ref_data[key]
    else:
        r = corr(t.reshape(-1, 1) - t.reshape(1, -1))
        eigval_ref, evec_ref = method_kle.solve_hom_fredholm(r, w)
        ref_data[key] = eigval_ref, evec_ref
        with open("test_fredholm_interpolation.dump", 'wb') as f:
            pickle.dump(ref_data, f)

    method_kle.align_eig_vec(evec_ref)
    t_ref = t

    eigvec_ref = []
    for l in range(ng_ref):
        eigvec_ref.append(tools.ComplexInterpolatedUnivariateSpline(t, evec_ref[:, l]))

    meth = [method_kle.get_mid_point_weights_times,
            method_kle.get_trapezoidal_weights_times,
            method_kle.get_simpson_weights_times,
            method_kle.get_four_point_weights_times,
            method_kle.get_gauss_legendre_weights_times,
            method_kle.get_tanh_sinh_weights_times]
    cols = ['r', 'b', 'g', 'm', 'c', 'lime']



    fig, ax = plt.subplots(ncols=2, nrows=2, sharex=True, sharey=True, figsize=(16,12))
    ax = ax.flatten()

    ks = [10,14,18,26]

    lns, lbs = [], []

    for ik, k in enumerate(ks):
        axc = ax[ik]

        ng = 4*k+1
        for i, _meth in enumerate(meth):
            print(ik, i)
            t, w = _meth(t_max, ng)
            r = corr(t.reshape(-1, 1) - t.reshape(1, -1))
            _eig_val, _eig_vec = method_kle.solve_hom_fredholm(r, w)
            method_kle.align_eig_vec(_eig_vec)

            eigvec_intp = []
            for l in range(ng):
                eigvec_intp.append(tools.ComplexInterpolatedUnivariateSpline(t, _eig_vec[:, l]))

            ydata_fixed = []
            ydata_spline = []
            ydata_integr_intp = []
            xdata = np.arange(min(ng, 100))

            for idx in xdata:
                evr = eigvec_ref[idx](t)
                ydata_fixed.append(np.max(np.abs(_eig_vec[:,idx] - evr)))
                ydata_spline.append(np.max(np.abs(eigvec_intp[idx](t_ref) - evec_ref[:,idx])))
                uip = np.asarray([my_intp(ti, corr, w, t, _eig_vec[:,idx], _eig_val[idx]) for ti in t_ref])
                ydata_integr_intp.append(np.max(np.abs(uip - evec_ref[:,idx])))

            p1, = axc.plot(xdata, ydata_fixed, color=cols[i], label=_meth.__name__)
            p2, = axc.plot(xdata, ydata_spline, color=cols[i], ls='--')
            p3, = axc.plot(xdata, ydata_integr_intp, color=cols[i], alpha = 0.5)
            if ik == 0:
                lns.append(p1)
                lbs.append(_meth.__name__)

        if ik == 0:
            lines = [p1,p2,p3]
            labels = ['fixed', 'spline', 'integral interp']
        axc.set_yscale('log')
        axc.set_title("ng {}".format(ng))
        axc.set_xlim([0,100])
        axc.grid()
        axc.legend()


    fig.legend(lines, labels, loc = "lower right", ncol=3)
    fig.legend(lns, lbs, loc="lower left", ncol=2)
    plt.subplots_adjust(bottom = 0.15)

    plt.savefig("test_fredholm_eigvec_interpolation_{}_.pdf".format(corr.__name__))
    plt.show()
예제 #2
0
def show_reconstr_ac_interp():
    t_max = 25
    corr = lac
    #corr = oac

    meth = [method_kle.get_mid_point_weights_times,
            method_kle.get_trapezoidal_weights_times,
            method_kle.get_simpson_weights_times,
            method_kle.get_four_point_weights_times,
            method_kle.get_gauss_legendre_weights_times,
            method_kle.get_tanh_sinh_weights_times]

    cols = ['r', 'b', 'g', 'm', 'c']

    def my_intp(ti, corr, w, t, u, lam):
        return np.sum(corr(ti - t) * w * u) / lam

    fig, ax = plt.subplots(figsize=(16, 12))

    ks = [40]
    for i, k in enumerate(ks):
        axc = ax
        ng = 4 * k + 1
        for i, _meth in enumerate(meth):
            t, w = _meth(t_max, ng)
            r = corr(t.reshape(-1, 1) - t.reshape(1, -1))
            _eig_val, _eig_vec = method_kle.solve_hom_fredholm(r, w)

            tf = method_kle.subdevide_axis(t, ngfac=3)
            tsf = method_kle.subdevide_axis(tf, ngfac=2)

            diff1 = - corr(t.reshape(-1,1) - t.reshape(1,-1))
            diff2 = - corr(tf.reshape(-1, 1) - tf.reshape(1, -1))
            diff3 = - corr(tsf.reshape(-1, 1) - tsf.reshape(1, -1))

            xdata = np.arange(ng)
            ydata1 = np.ones(ng)
            ydata2 = np.ones(ng)
            ydata3 = np.ones(ng)

            for idx in xdata:
                evec = _eig_vec[:, idx]
                if _eig_val[idx] < 0:
                    break
                sqrt_eval = np.sqrt(_eig_val[idx])

                uip = np.asarray([my_intp(ti, corr, w, t, evec, sqrt_eval) for ti in tf])
                uip_spl = tools.ComplexInterpolatedUnivariateSpline(tf, uip)
                uip_sf = uip_spl(tsf)
                diff1 += _eig_val[idx] * evec.reshape(-1, 1) * np.conj(evec.reshape(1, -1))
                diff2 += uip.reshape(-1, 1) * np.conj(uip.reshape(1, -1))
                diff3 += uip_sf.reshape(-1,1) * np.conj(uip_sf.reshape(1,-1))
                ydata1[idx] = np.max(np.abs(diff1))
                ydata2[idx] = np.max(np.abs(diff2))
                ydata3[idx] = np.max(np.abs(diff3))

            p, = axc.plot(xdata, ydata1, label=_meth.__name__, alpha = 0.5)
            axc.plot(xdata, ydata2, color=p.get_color(), ls='--')
            axc.plot(xdata, ydata3, color=p.get_color(), lw=2)

        axc.set_yscale('log')
        axc.set_title("ng: {}".format(ng))
        axc.grid()
        axc.legend()
    plt.show()
예제 #3
0
def show_solve_fredholm_interp_eigenfunc():
    """
        here we take the discrete eigenfunctions of the Fredholm problem
        and use qubic interpolation to check the integral equality.

        the difference between the midpoint weights and simpson weights become
        visible. Although the simpson integration yields on average a better performance
        there are high fluctuation in the error.
    """
    _WC_ = 2
    def lac(t):
        return np.exp(- np.abs(t) - 1j*_WC_*t)

    t_max = 10
    ng = 81
    ngfac = 2
    tfine = np.linspace(0, t_max, (ng-1)*ngfac+1)

    lef = tools.LorentzianEigenFunctions(t_max=t_max, gamma=1, w=_WC_, num=5)


    fig, ax = plt.subplots(nrows=2, ncols=2, sharey=True, sharex=True)
    ax = ax.flatten()

    for idx in range(4):
        u_exact = lef.get_eigfunc(idx)(tfine)
        method_kle.align_eig_vec(u_exact.reshape(-1,1))

        t, w = sp.method_kle.get_mid_point_weights_times(t_max, ng)
        r = lac(t.reshape(-1, 1) - t.reshape(1, -1))
        _eig_val, _eig_vec = sp.method_kle.solve_hom_fredholm(r, w)
        method_kle.align_eig_vec(_eig_vec)
        u0 = tools.ComplexInterpolatedUnivariateSpline(t, _eig_vec[:,idx])

        err = np.abs(u0(tfine) - u_exact)
        axc = ax[idx]
        axc.plot(tfine, err, color='r', label='midp')

        t, w = sp.method_kle.get_trapezoidal_weights_times(t_max, ng)
        r = lac(t.reshape(-1, 1) - t.reshape(1, -1))
        _eig_val, _eig_vec = sp.method_kle.solve_hom_fredholm(r, w)
        method_kle.align_eig_vec(_eig_vec)
        u0 = tools.ComplexInterpolatedUnivariateSpline(t, _eig_vec[:, idx])
        err = np.abs(u0(tfine) - u_exact)
        axc.plot(tfine, err, color='b', label='trapz')
        axc.plot(tfine[::ngfac], err[::ngfac], ls='', marker='x', color='b')

        t, w = sp.method_kle.get_simpson_weights_times(t_max, ng)
        r = lac(t.reshape(-1, 1) - t.reshape(1, -1))
        _eig_val, _eig_vec = sp.method_kle.solve_hom_fredholm(r, w)
        method_kle.align_eig_vec(_eig_vec)
        u0 = tools.ComplexInterpolatedUnivariateSpline(t, _eig_vec[:, idx])
        err = np.abs(u0(tfine) - u_exact)
        axc.plot(tfine, err, color='k', label='simp')
        axc.plot(tfine[::ngfac], err[::ngfac], ls='', marker='x', color='k')

        axc.set_yscale('log')
        axc.set_title("eigen function # {}".format(idx))
        axc.grid()


    axc.set_yscale('log')
    fig.suptitle("np.abs(int R(t-s)u_i(s) - lam_i * u_i(t))")
    plt.show()
예제 #4
0
def show_compare_weights_in_solve_fredholm_lac():
    """
        here we try to examine which integration weights perform best in order to
        calculate the eigenfunctions -> well it seems to depend on the situation

        although simpson and gauss-legendre perform well
    """
    t_max = 15
    corr = lac

    ng_ref = 3501

    _meth_ref = method_kle.get_simpson_weights_times
    t, w = _meth_ref(t_max, ng_ref)

    try:
        with open("test_fredholm_interpolation.dump", 'rb') as f:
            ref_data = pickle.load(f)
    except FileNotFoundError:
        ref_data = {}
    key = (tuple(t), tuple(w), corr.__name__)
    if key in ref_data:
        eigval_ref, evec_ref = ref_data[key]
    else:
        r = corr(t.reshape(-1, 1) - t.reshape(1, -1))
        eigval_ref, evec_ref = method_kle.solve_hom_fredholm(r, w)
        ref_data[key] = eigval_ref, evec_ref
        with open("test_fredholm_interpolation.dump", 'wb') as f:
            pickle.dump(ref_data, f)


    method_kle.align_eig_vec(evec_ref)

    ks = [20,40,80,160]

    fig, ax = plt.subplots(ncols=2, nrows=2, sharex=True, sharey=True, figsize=(16,12))

    ax = ax.flatten()

    lines = []
    labels = []

    eigvec_ref = []
    for i in range(ng_ref):
        eigvec_ref.append(tools.ComplexInterpolatedUnivariateSpline(t, evec_ref[:, i]))

    meth = [method_kle.get_mid_point_weights_times,
            method_kle.get_trapezoidal_weights_times,
            method_kle.get_simpson_weights_times,
            method_kle.get_four_point_weights_times,
            method_kle.get_gauss_legendre_weights_times,
            method_kle.get_sinh_tanh_weights_times]
    cols = ['r', 'b', 'g', 'm', 'c', 'lime']
    for j, k in enumerate(ks):
        axc = ax[j]
        ng = 4*k+1

        for i, _meth in enumerate(meth):
            t, w = _meth(t_max, ng)
            r = corr(t.reshape(-1, 1) - t.reshape(1, -1))
            _eig_val, _eig_vec = method_kle.solve_hom_fredholm(r, w, eig_val_min=0)
            method_kle.align_eig_vec(_eig_vec)

            dx = []
            dy = []
            dy2 = []

            for l in range(len(_eig_val)):
                evr = eigvec_ref[l](t)
                diff = np.abs(_eig_vec[:,l] - evr)
                dx.append(l)
                dy.append(np.max(diff))
                dy2.append(abs(_eig_val[l] - eigval_ref[l]))

            p, = axc.plot(dx, dy, color=cols[i])
            axc.plot(dx, dy2, color=cols[i], ls='--')
            if j == 0:
                lines.append(p)
                labels.append(_meth.__name__)


        t, w = method_kle.get_simpson_weights_times(t_max, ng)
        r = corr(t.reshape(-1, 1) - t.reshape(1, -1))
        _eig_val, _eig_vec = method_kle.solve_hom_fredholm(r, w, eig_val_min=0)
        method_kle.align_eig_vec(_eig_vec)
        _eig_vec = _eig_vec[1::2, :]
        t = t[1::2]

        dx = []
        dy = []
        dy2 = []

        for l in range(len(_eig_val)):
            evr = eigvec_ref[l](t)
            diff = np.abs(_eig_vec[:, l] - evr)
            dx.append(l)
            dy.append(np.max(diff))
            dy2.append(abs(_eig_val[l] - eigval_ref[l]))

        p, = axc.plot(dx, dy, color='lime')
        p_lam, = axc.plot(list(range(ng)), eigval_ref[:ng], color='k')
        if j == 0:
            lines.append(p)
            labels.append('simp 2nd')
            lines.append(p_lam)
            labels.append('abs(lamnda_i)')

        axc.grid()
        axc.set_yscale('log')
        axc.set_xlim([0,100])
        axc.set_ylim([1e-5, 10])
        axc.set_title("ng {}".format(ng))


    fig.suptitle("use ref with ng_ref {} and method '{}'".format(ng_ref, _meth_ref.__name__))
    fig.legend(handles=lines, labels=labels, ncol=3, loc='lower center')
    fig.subplots_adjust(bottom=0.15)
    plt.show()
예제 #5
0
def show_auto_ng():
    corr = lac
    t_max = 15
    meth = [#method_kle.get_mid_point_weights_times,
            method_kle.get_trapezoidal_weights_times,
            method_kle.get_simpson_weights_times]
            #method_kle.get_four_point_weights_times]
            #method_kle.get_gauss_legendre_weights_times]
            #method_kle.get_tanh_sinh_weights_times]

    ns = 10**4
    t_check = np.random.rand(ns)*t_max
    s_check = np.random.rand(ns)*t_max

    _meth = method_kle.get_trapezoidal_weights_times
    tol = 1e-2
    ng_fac = 1
    ui, t, ev = method_kle.auto_ng(corr, t_max, ngfac=ng_fac, meth=_meth, tol=tol, ret_eigvals=True)
    tsf = method_kle.subdevide_axis(t, 4)
    lef = tools.LorentzianEigenFunctions(t_max=t_max, gamma=1, w=_WC_, num=800)
    c_all = corr(t_check - s_check)

    c_allsf = corr(tsf.reshape(-1,1) - tsf.reshape(1,-1))

    s = 200
    d_num = []
    d_exa = []
    c_num = np.zeros(shape=ns, dtype=np.complex128)
    c_exa = np.zeros(shape=ns, dtype=np.complex128)

    c_numsf = np.zeros(shape=(len(tsf), len(tsf)), dtype=np.complex128)
    c_exasf = np.zeros(shape=(len(tsf), len(tsf)), dtype=np.complex128)
    d_numsf = []
    d_exasf = []
    for i in range(s):
        u = tools.ComplexInterpolatedUnivariateSpline(t, ui[i])
        c_num += u(t_check) * np.conj(u(s_check))
        d_num.append(np.max(np.abs(c_all - c_num)/np.abs(c_all)))

        usf = u(tsf)
        c_numsf += usf.reshape(-1, 1) * np.conj(usf.reshape(1, -1))
        d_numsf.append(np.max(np.abs(c_allsf - c_numsf)/np.abs(c_allsf)))


        u = lef.get_eigfunc(i)
        c_exa += lef.get_eigval(i)*u(t_check) * np.conj(u(s_check))
        d_exa.append(np.max(np.abs(c_all - c_exa)/np.abs(c_all)))

        usf = u(tsf)
        c_exasf += lef.get_eigval(i)*usf.reshape(-1, 1) * np.conj(usf.reshape(1, -1))
        d_exasf.append(np.max(np.abs(c_allsf - c_exasf)/np.abs(c_allsf)))



    fig, ax = plt.subplots(ncols=1)

    ax.plot(np.arange(s), d_num, label='num_rnd')
    ax.plot(np.arange(s), d_exa, label='exa_rnd')

    ax.plot(np.arange(s), d_numsf, label='num super fine')
    ax.plot(np.arange(s), d_exasf, label='exa super fine')

    ng_fac = 1
    ui, t, ev = method_kle.auto_ng(corr, t_max, ngfac=ng_fac, meth=_meth, tol=tol, ret_eigvals=True)
    c_all = corr(t.reshape(-1, 1) - t.reshape((1, -1)))

    c0 = ui[0].reshape(-1, 1) * np.conj(ui[0]).reshape(1, -1)
    u = lef.get_eigfunc(0)
    ut = u(t)
    c0_exa = lef.get_eigval(0)*ut.reshape(-1,1)*np.conj(ut.reshape(1,-1))
    d_num = [np.max(np.abs(c_all - c0))]
    d_exa = [np.max(np.abs(c_all - c0_exa))]
    for i in range(1, s):
        c0 += ui[i].reshape(-1, 1) * np.conj(ui[i]).reshape(1, -1)
        d_num.append(np.max(np.abs(c_all - c0)/np.abs(c_all)))

        u = lef.get_eigfunc(i)
        ut = u(t)
        c0_exa += lef.get_eigval(i) * ut.reshape(-1, 1) * np.conj(ut.reshape(1, -1))
        d_exa.append(np.max(np.abs(c_all - c0_exa)/np.abs(c_all)))

    print("re exa", np.max(np.abs(c_all.real - c0_exa.real)))
    print("im exa", np.max(np.abs(c_all.imag - c0_exa.imag)))
    print("re num", np.max(np.abs(c_all.real - c0.real)))
    print("im num", np.max(np.abs(c_all.imag - c0.imag)))


    ax.plot(np.arange(s), d_num, label='num')
    ax.plot(np.arange(s), d_exa, label='exa')

    ax.set_yscale('log')
    ax.legend()
    ax.grid()
    plt.show()
예제 #6
0
def show_solve_fredholm_error_scaling_oac():
    """
    """
    t_max = 15
    corr = oac

    ng_ref = 3501

    _meth_ref = method_kle.get_simpson_weights_times
    t, w = _meth_ref(t_max, ng_ref)

    t_3501 = t

    try:
        with open("test_fredholm_interpolation.dump", 'rb') as f:
            ref_data = pickle.load(f)
    except FileNotFoundError:
        ref_data = {}
    key = (tuple(t), tuple(w), corr.__name__)
    if key in ref_data:
        eigval_ref, evec_ref = ref_data[key]
    else:
        r = corr(t.reshape(-1, 1) - t.reshape(1, -1))
        eigval_ref, evec_ref = method_kle.solve_hom_fredholm(r, w)
        ref_data[key] = eigval_ref, evec_ref
        with open("test_fredholm_interpolation.dump", 'wb') as f:
            pickle.dump(ref_data, f)

    method_kle.align_eig_vec(evec_ref)

    ks = np.logspace(0.7, 2.3, 15, dtype=np.int)

    meth = [method_kle.get_mid_point_weights_times,
            method_kle.get_trapezoidal_weights_times,
            method_kle.get_simpson_weights_times,
            method_kle.get_four_point_weights_times,
            method_kle.get_gauss_legendre_weights_times,
            method_kle.get_tanh_sinh_weights_times]

    names = ['midp', 'trapz', 'simp', 'fp', 'gl', 'ts']
    idxs = [0,10,20]

    eigvec_ref = []
    for idx in idxs:
        eigvec_ref.append(tools.ComplexInterpolatedUnivariateSpline(t, evec_ref[:, idx]))

    data = np.empty(shape= (len(meth), len(ks), len(idxs)))
    data_spline = np.empty(shape=(len(meth), len(ks), len(idxs)))
    data_int = np.empty(shape=(len(meth), len(ks), len(idxs)))
    for j, k in enumerate(ks):
        print(j, len(ks))
        ng = 4 * k + 1
        for i, _meth in enumerate(meth):
            t, w = _meth(t_max, ng)
            r = corr(t.reshape(-1, 1) - t.reshape(1, -1))
            _eig_val, _eig_vec = method_kle.solve_hom_fredholm(r, w)
            method_kle.align_eig_vec(_eig_vec)
            for k, idx in enumerate(idxs):
                d = np.max(np.abs(_eig_vec[:,idx]-eigvec_ref[k](t)))
                data[i, j, k] = d

                uip = tools.ComplexInterpolatedUnivariateSpline(t, _eig_vec[:,idx])
                d = np.max(np.abs(uip(t_3501) - evec_ref[:, idx]))
                data_spline[i, j, k] = d

                uip = np.asarray([my_intp(ti, corr, w, t, _eig_vec[:, idx], _eig_val[idx]) for ti in t_3501])
                d = np.max(np.abs(uip - evec_ref[:, idx]))
                data_int[i, j, k] = d

    ng = 4*ks + 1
    for i in range(len(meth)):
        p, = plt.plot(ng, data[i, :, 0], marker='o', label="no intp {}".format(names[i]))
        c = p.get_color()
        plt.plot(ng, data_spline[i, :, 0], marker='.', color=c, label="spline {}".format(names[i]))
        plt.plot(ng, data_int[i, :, 0], marker='^', color=c, label="intp {}".format(names[i]))

    plt.yscale('log')
    plt.xscale('log')
    plt.legend()
    plt.grid()

    plt.show()
예제 #7
0
def show_reconstr_ac():
    corr = lac

    t_max = 15
    meth = [method_kle.get_mid_point_weights_times,
            method_kle.get_trapezoidal_weights_times,
            method_kle.get_simpson_weights_times]
            #method_kle.get_four_point_weights_times,
            #method_kle.get_gauss_legendre_weights_times,
            #method_kle.get_tanh_sinh_weights_times]


    names = ['midp', 'trapz', 'simp', 'four', 'gl', 'ts']


    for _mi, _meth in enumerate(meth):
        ng_fac = 1
        ng = 401

        t, w = _meth(t_max=t_max, num_grid_points=ng)
        is_equi = method_kle.is_axis_equidistant(t)
        r = method_kle._calc_corr_matrix(t, corr, is_equi)
        _eig_vals, _eig_vecs = method_kle.solve_hom_fredholm(r, w)

        tfine = method_kle.subdevide_axis(t, ng_fac)  # setup fine
        tsfine = method_kle.subdevide_axis(tfine, 2)

        if is_equi:
            alpha_k = method_kle._calc_corr_min_t_plus_t(tfine, corr)  # from -tmax untill tmax on the fine grid

        num_ev = ng

        csf = -corr(tsfine.reshape(-1,1) - tsfine.reshape(1,-1))
        abs_csf = np.abs(csf)

        cf = -corr(tfine.reshape(-1, 1) - tfine.reshape(1, -1))
        abs_cf = np.abs(cf)

        c = -corr(t.reshape(-1, 1) - t.reshape(1, -1))
        abs_c = np.abs(c)


        dsf = []
        df = []
        d = []
        dsfa = []
        dfa = []
        da = []
        for i in range(0, num_ev):
            evec = _eig_vecs[:, i]
            if _eig_vals[i] < 0:
                break
            sqrt_eval = np.sqrt(_eig_vals[i])
            if ng_fac != 1:
                if not is_equi:
                    sqrt_lambda_ui_fine = np.asarray([np.sum(corr(ti - t) * w * evec) / sqrt_eval for ti in tfine])
                else:
                    sqrt_lambda_ui_fine = stocproc_c.eig_func_interp(delta_t_fac=ng_fac,
                                                                     time_axis=t,
                                                                     alpha_k=alpha_k,
                                                                     weights=w,
                                                                     eigen_val=sqrt_eval,
                                                                     eigen_vec=evec)
            else:
                sqrt_lambda_ui_fine = evec * sqrt_eval

            sqrt_lambda_ui_spl = tools.ComplexInterpolatedUnivariateSpline(tfine, sqrt_lambda_ui_fine)
            ut = sqrt_lambda_ui_spl(tsfine)
            csf += ut.reshape(-1,1)*np.conj(ut.reshape(1,-1))
            diff = np.abs(csf) / abs_csf
            rmidx = np.argmax(diff)
            rmidx = np.unravel_index(rmidx, diff.shape)
            dsf.append(diff[rmidx])

            diff = np.abs(csf)
            amidx = np.argmax(diff)
            amidx = np.unravel_index(amidx, diff.shape)
            dsfa.append(diff[amidx])

            if i == num_ev-5:
                print(names[_mi], "rd max ", rmidx, "am", amidx)
                print("csf", np.abs(csf[rmidx]), np.abs(csf[amidx]))
                print("abs csf", abs_csf[rmidx], abs_csf[amidx])

            ut = sqrt_lambda_ui_fine
            cf += ut.reshape(-1, 1) * np.conj(ut.reshape(1, -1))
            df.append(np.max(np.abs(cf) / abs_cf))
            dfa.append(np.max(np.abs(cf)))

            ut = evec * sqrt_eval
            c += ut.reshape(-1, 1) * np.conj(ut.reshape(1, -1))
            d.append(np.max(np.abs(c) / abs_c))
            da.append(np.max(np.abs(c)))

        print(names[_mi], "rd max ", rmidx, "am", amidx)
        print("csf", np.abs(csf[rmidx]), np.abs(csf[amidx]))
        print("abs csf", abs_csf[rmidx], abs_csf[amidx])


        p, = plt.plot(np.arange(len(d)), d, label=names[_mi], ls='', marker='.')
        plt.plot(np.arange(len(df)), df, color=p.get_color(), ls='--')
        plt.plot(np.arange(len(dsf)), dsf, color=p.get_color())

        plt.plot(np.arange(len(d)), da, ls='', marker='.', color=p.get_color())
        plt.plot(np.arange(len(df)), dfa, color=p.get_color(), ls='--')
        plt.plot(np.arange(len(dsf)), dsfa, color=p.get_color())


    plt.yscale('log')
    plt.legend()
    plt.grid()
    plt.show()