예제 #1
0
    def __init__(self,
                 start_time,
                 prior: GaussianState,
                 sigma_process_radar=0.01,
                 sigma_process_ais=0.01,
                 sigma_meas_radar=3,
                 sigma_meas_ais=1):
        """

        :param measurements_radar:
        :param measurements_ais:
        :param start_time:
        :param prior:
        :param sigma_process_radar:
        :param sigma_process_ais:
        :param sigma_meas_radar:
        :param sigma_meas_ais:
        """
        self.start_time = start_time

        # transition models (process models)
        self.transition_model_radar = CombinedLinearGaussianTransitionModel([
            ConstantVelocity(sigma_process_radar),
            ConstantVelocity(sigma_process_radar)
        ])
        self.transition_model_ais = CombinedLinearGaussianTransitionModel([
            ConstantVelocity(sigma_process_ais),
            ConstantVelocity(sigma_process_ais)
        ])

        # Specify measurement model for radar
        self.measurement_model_radar = LinearGaussian(
            ndim_state=4,  # number of state dimensions
            mapping=(0, 2),  # mapping measurement vector index to state index
            noise_covar=np.array([
                [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
                [0, sigma_meas_radar]
            ]))

        # Specify measurement model for AIS
        self.measurement_model_ais = LinearGaussian(ndim_state=4,
                                                    mapping=(0, 2),
                                                    noise_covar=np.array(
                                                        [[sigma_meas_ais, 0],
                                                         [0, sigma_meas_ais]]))

        # specify predictors
        self.predictor_radar = KalmanPredictor(self.transition_model_radar)
        self.predictor_ais = KalmanPredictor(self.transition_model_ais)

        # specify updaters
        self.updater_radar = KalmanUpdater(self.measurement_model_radar)
        self.updater_ais = KalmanUpdater(self.measurement_model_ais)

        # create prior, both trackers use the same starting point
        self.prior_radar = prior
        self.prior_ais = prior
    def __init__(self,
                 measurements_radar,
                 measurements_ais,
                 start_time,
                 prior: GaussianState,
                 sigma_process=0.01,
                 sigma_meas_radar=3,
                 sigma_meas_ais=1):
        """

        :param measurements_radar:
        :param measurements_ais:
        :param start_time:
        :param prior:
        :param sigma_process:
        :param sigma_meas_radar:
        :param sigma_meas_ais:
        """
        # measurements and start time
        self.measurements_radar = measurements_radar
        self.measurements_ais = measurements_ais
        self.start_time = start_time

        # transition model
        self.transition_model = CombinedLinearGaussianTransitionModel(
            [ConstantVelocity(sigma_process),
             ConstantVelocity(sigma_process)])

        # same measurement models as used when generating the measurements
        # Specify measurement model for radar
        self.measurement_model_radar = LinearGaussian(
            ndim_state=4,  # number of state dimensions
            mapping=(0, 2),  # mapping measurement vector index to state index
            noise_covar=np.array([
                [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
                [0, sigma_meas_radar]
            ]))

        # Specify measurement model for AIS
        self.measurement_model_ais = LinearGaussian(ndim_state=4,
                                                    mapping=(0, 2),
                                                    noise_covar=np.array(
                                                        [[sigma_meas_ais, 0],
                                                         [0, sigma_meas_ais]]))

        # specify predictor
        self.predictor = KalmanPredictor(self.transition_model)

        # specify updaters
        self.updater_radar = KalmanUpdater(self.measurement_model_radar)
        self.updater_ais = KalmanUpdater(self.measurement_model_ais)

        # create prior todo move later and probably rename
        self.prior = prior
예제 #3
0
    birth_rate=0.2,
    death_probability=0.05,
    seed=3
)
detection_sim = SimpleDetectionSimulator(
    groundtruth=groundtruth_sim,
    measurement_model=measurement_model,
    meas_range=np.array([[-1, 1], [-1, 1]]) * 5000,  # Area to generate clutter
    detection_probability=0.9,
    clutter_rate=1,
    seed=4
)

# Filter
predictor = KalmanPredictor(transition_model)
updater = KalmanUpdater(measurement_model)

# Data Associator
hypothesiser = DistanceHypothesiser(predictor, updater, Mahalanobis(), missed_distance=3)
data_associator = GNNWith2DAssignment(hypothesiser)

# Initiator & Deleter
deleter = CovarianceBasedDeleter(covar_trace_thresh=1E3)
initiator = MultiMeasurementInitiator(
    GaussianState(np.array([[0], [0], [0], [0]]), np.diag([0, 100, 0, 1000])),
    measurement_model=measurement_model,
    deleter=deleter,
    data_associator=data_associator,
    updater=updater,
    min_points=3,
)
예제 #4
0
#
# :math:`\mathbf{z}_k - H_{k}\mathbf{x}_{k|k-1}` is known as the *innovation* and :math:`S_k` the
# *innovation covariance*; :math:`K_k` is the *Kalman gain*.

# %%
# Constructing a predictor and updater in Stone Soup is simple. In a nice division of
# responsibility, a :class:`~.Predictor` takes a :class:`~.TransitionModel` as input and
# an :class:`~.Updater` takes a :class:`~.MeasurementModel` as input. Note that for now we're using
# the same models used to generate the ground truth and the simulated measurements. This won't
# usually be possible and it's an interesting exercise to explore what happens when these
# parameters are mismatched.
from stonesoup.predictor.kalman import KalmanPredictor
predictor = KalmanPredictor(transition_model)

from stonesoup.updater.kalman import KalmanUpdater
updater = KalmanUpdater(measurement_model)

# %%
# Run the Kalman filter
# ^^^^^^^^^^^^^^^^^^^^^
# Now we have the components, we can execute the Kalman filter estimator on the simulated data.
#
# In order to start, we'll need to create the first prior estimate. We're going to use the
# :class:`~.GaussianState` we mentioned earlier. As the name suggests, this parameterises the state
# as :math:`\mathcal{N}(\mathbf{x}_0, P_0)`. By happy chance the initial values are chosen to match
# the truth quite well. You might want to manipulate these to see what happens.
from stonesoup.types.state import GaussianState
prior = GaussianState([[0], [1], [0], [1]],
                      np.diag([1.5, 0.5, 1.5, 0.5]),
                      timestamp=start_time)
class kalman_filter_ais_as_measurement:
    """
    todo
    """
    def __init__(self,
                 measurements_radar,
                 measurements_ais,
                 start_time,
                 prior: GaussianState,
                 sigma_process=0.01,
                 sigma_meas_radar=3,
                 sigma_meas_ais=1):
        """

        :param measurements_radar:
        :param measurements_ais:
        :param start_time:
        :param prior:
        :param sigma_process:
        :param sigma_meas_radar:
        :param sigma_meas_ais:
        """
        # measurements and start time
        self.measurements_radar = measurements_radar
        self.measurements_ais = measurements_ais
        self.start_time = start_time

        # transition model
        self.transition_model = CombinedLinearGaussianTransitionModel(
            [ConstantVelocity(sigma_process),
             ConstantVelocity(sigma_process)])

        # same measurement models as used when generating the measurements
        # Specify measurement model for radar
        self.measurement_model_radar = LinearGaussian(
            ndim_state=4,  # number of state dimensions
            mapping=(0, 2),  # mapping measurement vector index to state index
            noise_covar=np.array([
                [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
                [0, sigma_meas_radar]
            ]))

        # Specify measurement model for AIS
        self.measurement_model_ais = LinearGaussian(ndim_state=4,
                                                    mapping=(0, 2),
                                                    noise_covar=np.array(
                                                        [[sigma_meas_ais, 0],
                                                         [0, sigma_meas_ais]]))

        # specify predictor
        self.predictor = KalmanPredictor(self.transition_model)

        # specify updaters
        self.updater_radar = KalmanUpdater(self.measurement_model_radar)
        self.updater_ais = KalmanUpdater(self.measurement_model_ais)

        # create prior todo move later and probably rename
        self.prior = prior

    def track(self):
        self.tracks_fused = Track()
        self.tracks_radar = Track()
        for measurement_idx in range(0, len(self.measurements_radar)):
            # radar measurement every timestep, AIS measurement every second
            # first predict, then update with radar measurement. Then every second iteration, perform an extra update step
            # using the AIS measurement
            measurement_radar = self.measurements_radar[measurement_idx]

            prediction = self.predictor.predict(
                self.prior, timestamp=measurement_radar.timestamp)
            hypothesis = SingleHypothesis(prediction, measurement_radar)
            post = self.updater_radar.update(hypothesis)

            # save radar track
            self.tracks_radar.append(post)

            if measurement_idx % 2:
                measurement_ais = self.measurements_ais[measurement_idx // 2]
                hypothesis = SingleHypothesis(post, measurement_ais)
                post = self.updater_ais.update(hypothesis)

            # save fused track
            self.tracks_fused.append(post)
            self.prior = self.tracks_fused[-1]
        return self.tracks_fused, self.tracks_radar

    def plot(self, ground_truth):
        """
        :return:
        """
        # PLOT
        fig = plt.figure(figsize=(10, 6))
        ax = fig.add_subplot(1, 1, 1)
        ax.set_xlabel("$x$")
        ax.set_ylabel("$y$")
        ax.axis('equal')
        ax.plot([state.state_vector[0] for state in ground_truth],
                [state.state_vector[2] for state in ground_truth],
                linestyle="--",
                label='Ground truth')
        ax.scatter(
            [state.state_vector[0] for state in self.measurements_radar],
            [state.state_vector[1] for state in self.measurements_radar],
            color='b',
            label='Measurements Radar')
        ax.scatter([state.state_vector[0] for state in self.measurements_ais],
                   [state.state_vector[1] for state in self.measurements_ais],
                   color='r',
                   label='Measurements AIS')

        # add ellipses to the posteriors
        for state in self.tracks_fused:
            w, v = np.linalg.eig(
                self.measurement_model_radar.matrix() @ state.covar
                @ self.measurement_model_radar.matrix().T)
            max_ind = np.argmax(w)
            min_ind = np.argmin(w)
            orient = np.arctan2(v[1, max_ind], v[0, max_ind])
            ellipse = Ellipse(xy=(state.state_vector[0],
                                  state.state_vector[2]),
                              width=2 * np.sqrt(w[max_ind]),
                              height=2 * np.sqrt(w[min_ind]),
                              angle=np.rad2deg(orient),
                              alpha=0.2,
                              color='r')
            ax.add_artist(ellipse)

        for state in self.tracks_radar:
            w, v = np.linalg.eig(
                self.measurement_model_radar.matrix() @ state.covar
                @ self.measurement_model_radar.matrix().T)
            max_ind = np.argmax(w)
            min_ind = np.argmin(w)
            orient = np.arctan2(v[1, max_ind], v[0, max_ind])
            ellipse = Ellipse(xy=(state.state_vector[0],
                                  state.state_vector[2]),
                              width=2 * np.sqrt(w[max_ind]),
                              height=2 * np.sqrt(w[min_ind]),
                              angle=np.rad2deg(orient),
                              alpha=0.2,
                              color='b')
            ax.add_artist(ellipse)

        # add ellipses to add legend todo do this less ugly
        ellipse = Ellipse(xy=(0, 0),
                          width=0,
                          height=0,
                          color='r',
                          alpha=0.2,
                          label='Posterior Fused')
        ax.add_patch(ellipse)

        ellipse = Ellipse(xy=(0, 0),
                          width=0,
                          height=0,
                          color='b',
                          alpha=0.2,
                          label='Posterior Radar')
        ax.add_patch(ellipse)

        # todo move or remove
        ax.legend()
        ax.set_title(
            "Kalman filter tracking and fusion when AIS is viewed as a measurement"
        )
        fig.show()
        fig.savefig(
            "../results/scenario1/KF_tracking_and_fusion_viewing_ais_as_measurement.svg"
        )
예제 #6
0
def test_kalman_smoother(SmootherClass):

    # First create a track from some detections and then smooth - check the output.

    # Setup list of Detections
    start = datetime.now()
    times = [start + timedelta(seconds=i) for i in range(0, 5)]

    measurements = [
        np.array([[2.486559674128609]]),
        np.array([[2.424165626519697]]),
        np.array([[6.603176662762473]]),
        np.array([[9.329099124074590]]),
        np.array([[14.637975326666801]]),
    ]

    detections = [
        Detection(m, timestamp=timest)
        for m, timest in zip(measurements, times)
    ]

    # Setup models.
    trans_model = ConstantVelocity(noise_diff_coeff=1)
    meas_model = LinearGaussian(ndim_state=2,
                                mapping=[0],
                                noise_covar=np.array([[0.4]]))

    # Tracking components
    predictor = KalmanPredictor(transition_model=trans_model)
    updater = KalmanUpdater(measurement_model=meas_model)

    # Prior
    cstate = GaussianState(np.ones([2, 1]), np.eye(2), timestamp=start)
    track = Track()

    for detection in detections:
        # Predict
        pred = predictor.predict(cstate, timestamp=detection.timestamp)
        # form hypothesis
        hypothesis = SingleHypothesis(pred, detection)
        # Update
        cstate = updater.update(hypothesis)
        # write to track
        track.append(cstate)

    smoother = SmootherClass(transition_model=trans_model)
    smoothed_track = smoother.smooth(track)
    smoothed_state_vectors = [state.state_vector for state in smoothed_track]

    # Verify Values
    target_smoothed_vectors = [
        np.array([[1.688813974839928], [1.267196351952188]]),
        np.array([[3.307200214998506], [2.187167840595264]]),
        np.array([[6.130402001958210], [3.308896367021604]]),
        np.array([[9.821303658438408], [4.119557021638030]]),
        np.array([[14.257730973981149], [4.594862462495096]])
    ]

    assert np.allclose(smoothed_state_vectors, target_smoothed_vectors)

    # Check that a prediction is smoothable and that no error chucked
    # Also remove the transition model and use the one provided by the smoother
    track[1] = GaussianStatePrediction(pred.state_vector,
                                       pred.covar,
                                       timestamp=pred.timestamp)
    smoothed_track2 = smoother.smooth(track)
    assert isinstance(smoothed_track2[1], GaussianStatePrediction)

    # Check appropriate error chucked if not GaussianStatePrediction/Update
    track[-1] = detections[-1]
    with pytest.raises(TypeError):
        smoother._prediction(track[-1])
class kalman_filter_dependent_fusion:
    """
    todo
    """
    def __init__(self,
                 measurements_radar,
                 measurements_ais,
                 start_time,
                 prior: GaussianState,
                 sigma_process_radar=0.01,
                 sigma_process_ais=0.01,
                 sigma_meas_radar=3,
                 sigma_meas_ais=1):
        """

        :param measurements_radar:
        :param measurements_ais:
        :param start_time:
        :param prior:
        :param sigma_process_radar:
        :param sigma_process_ais:
        :param sigma_meas_radar:
        :param sigma_meas_ais:
        """
        self.start_time = start_time
        self.measurements_radar = measurements_radar
        self.measurements_ais = measurements_ais

        # same transition models (radar uses same as original)
        self.transition_model_radar = CombinedLinearGaussianTransitionModel([
            ConstantVelocity(sigma_process_radar),
            ConstantVelocity(sigma_process_radar)
        ])
        self.transition_model_ais = CombinedLinearGaussianTransitionModel([
            ConstantVelocity(sigma_process_ais),
            ConstantVelocity(sigma_process_ais)
        ])

        # same measurement models as used when generating the measurements
        # Specify measurement model for radar
        self.measurement_model_radar = LinearGaussian(
            ndim_state=4,  # number of state dimensions
            mapping=(0, 2),  # mapping measurement vector index to state index
            noise_covar=np.array([
                [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
                [0, sigma_meas_radar]
            ]))

        # Specify measurement model for AIS
        self.measurement_model_ais = LinearGaussian(ndim_state=4,
                                                    mapping=(0, 2),
                                                    noise_covar=np.array(
                                                        [[sigma_meas_ais, 0],
                                                         [0, sigma_meas_ais]]))

        # specify predictors
        self.predictor_radar = KalmanPredictor(self.transition_model_radar)
        self.predictor_ais = KalmanPredictor(self.transition_model_ais)

        # specify updaters
        self.updater_radar = KalmanUpdater(self.measurement_model_radar)
        self.updater_ais = KalmanUpdater(self.measurement_model_ais)

        # create prior, both trackers use the same starting point
        self.prior_radar = prior
        self.prior_ais = prior

    def track(self):
        """
        todo
        :return:
        """
        # create list for storing kalman gains
        kf_gains_radar = []
        kf_gains_ais = []

        # create list for storing transition_noise_covar
        transition_covars_radar = []
        transition_covars_ais = []

        # create list for storing tranisition matrixes
        transition_matrixes_radar = []
        transition_matrixes_ais = []

        # create list for storing tracks
        tracks_radar = Track()
        tracks_ais = Track()

        # track
        for measurement in self.measurements_radar:
            prediction = self.predictor_radar.predict(
                self.prior_radar, timestamp=measurement.timestamp)
            hypothesis = SingleHypothesis(prediction, measurement)
            # calculate the kalman gain
            hypothesis.measurement_prediction = self.updater_radar.predict_measurement(
                hypothesis.prediction,
                measurement_model=self.measurement_model_radar)
            post_cov, kalman_gain = self.updater_radar._posterior_covariance(
                hypothesis)
            kf_gains_radar.append(kalman_gain)
            # get the transition model covar NOTE; same for AIS and radar. Name change not a bug
            predict_over_interval = measurement.timestamp - self.prior_radar.timestamp
            transition_covars_radar.append(
                self.transition_model_radar.covar(
                    time_interval=predict_over_interval))
            transition_matrixes_radar.append(
                self.transition_model_radar.matrix(
                    time_interval=predict_over_interval))
            # update
            post = self.updater_radar.update(hypothesis)
            tracks_radar.append(post)
            self.prior_radar = post

        for measurement in self.measurements_ais:
            prediction = self.predictor_ais.predict(
                self.prior_ais, timestamp=measurement.timestamp)
            hypothesis = SingleHypothesis(prediction, measurement)
            # calculate the kalman gain
            hypothesis.measurement_prediction = self.updater_ais.predict_measurement(
                hypothesis.prediction,
                measurement_model=self.measurement_model_ais)
            post_cov, kalman_gain = self.updater_ais._posterior_covariance(
                hypothesis)
            kf_gains_ais.append(kalman_gain)
            # get the transition model covar
            predict_over_interval = measurement.timestamp - self.prior_ais.timestamp
            transition_covars_ais.append(
                self.transition_model_ais.covar(
                    time_interval=predict_over_interval))
            transition_matrixes_ais.append(
                self.transition_model_ais.matrix(
                    time_interval=predict_over_interval))
            # update
            post = self.updater_ais.update(hypothesis)
            tracks_ais.append(post)
            self.prior_ais = post

        # FOR NOW: run track_to_track_association here, todo change pipeline flow
        # FOR NOW: run the association only when both have a new posterior (so each time the AIS has a posterior)
        # todo handle fusion when one track predicts and the other updates. (or both predicts) (Can't be done with the theory
        #  described in the article)

        cross_cov_ij = [np.zeros([4, 4])]
        cross_cov_ji = [np.zeros([4, 4])]

        # TODO change flow to assume that the indexes decide whether its from the same iterations
        # use indexes to loop through tracks, kf_gains etc

        tracks_fused = []
        # tracks_fused.append(tracks_radar[0])
        for i in range(1, len(tracks_radar)):
            # we assume that the indexes correlates with the timestamps. I.e. that the lists are 'synchronized'
            # check to make sure
            if tracks_ais[i].timestamp == tracks_radar[i].timestamp:
                # calculate the cross-covariance estimation error
                cross_cov_ij.append(
                    calc_cross_cov_estimate_error(
                        self.measurement_model_radar.matrix(),
                        self.measurement_model_ais.matrix(), kf_gains_radar[i],
                        kf_gains_ais[i], transition_matrixes_radar[i],
                        transition_covars_ais[i], cross_cov_ij[i - 1]))
                cross_cov_ji.append(
                    calc_cross_cov_estimate_error(
                        self.measurement_model_ais.matrix(),
                        self.measurement_model_radar.matrix(), kf_gains_ais[i],
                        kf_gains_radar[i], transition_matrixes_ais[i],
                        transition_covars_radar[i], cross_cov_ji[i - 1]))

                # test for track association
                # same_target = track_to_track_association.test_association_dependent_tracks(tracks_radar[i],
                #                                                                            tracks_ais[i],
                #                                                                            cross_cov_ij[i],
                #                                                                            cross_cov_ji[i], 0.01)
                same_target = True  # ignore test for track association for now
                if same_target:
                    fused_posterior, fused_covar = track_to_track_fusion.fuse_dependent_tracks(
                        tracks_radar[i], tracks_ais[i], cross_cov_ij[i],
                        cross_cov_ji[i])
                    estimate = GaussianState(fused_posterior,
                                             fused_covar,
                                             timestamp=tracks_ais[i].timestamp)
                    tracks_fused.append(estimate)
        return tracks_fused, tracks_ais, tracks_radar
예제 #8
0
def test_sqrt_kalman():
    measurement_model = LinearGaussian(ndim_state=2,
                                       mapping=[0],
                                       noise_covar=np.array([[0.04]]))
    prediction = GaussianStatePrediction(
        np.array([[-6.45], [0.7]]),
        np.array([[4.1123, 0.0013], [0.0013, 0.0365]]))
    sqrt_prediction = SqrtGaussianState(prediction.state_vector,
                                        np.linalg.cholesky(prediction.covar))
    measurement = Detection(np.array([[-6.23]]))

    # Calculate evaluation variables
    eval_measurement_prediction = GaussianMeasurementPrediction(
        measurement_model.matrix() @ prediction.mean,
        measurement_model.matrix() @ prediction.covar
        @ measurement_model.matrix().T + measurement_model.covar(),
        cross_covar=prediction.covar @ measurement_model.matrix().T)
    kalman_gain = eval_measurement_prediction.cross_covar @ np.linalg.inv(
        eval_measurement_prediction.covar)
    eval_posterior = GaussianState(
        prediction.mean + kalman_gain
        @ (measurement.state_vector - eval_measurement_prediction.mean),
        prediction.covar -
        kalman_gain @ eval_measurement_prediction.covar @ kalman_gain.T)

    # Test Square root form returns the same as standard form
    updater = KalmanUpdater(measurement_model=measurement_model)
    sqrt_updater = SqrtKalmanUpdater(measurement_model=measurement_model,
                                     qr_method=False)
    qr_updater = SqrtKalmanUpdater(measurement_model=measurement_model,
                                   qr_method=True)

    posterior = updater.update(
        SingleHypothesis(prediction=prediction, measurement=measurement))
    posterior_s = sqrt_updater.update(
        SingleHypothesis(prediction=sqrt_prediction, measurement=measurement))
    posterior_q = qr_updater.update(
        SingleHypothesis(prediction=sqrt_prediction, measurement=measurement))

    assert np.allclose(posterior_s.mean, eval_posterior.mean, 0, atol=1.e-14)
    assert np.allclose(posterior_q.mean, eval_posterior.mean, 0, atol=1.e-14)
    assert np.allclose(posterior.covar, eval_posterior.covar, 0, atol=1.e-14)
    assert np.allclose(eval_posterior.covar,
                       posterior_s.sqrt_covar @ posterior_s.sqrt_covar.T,
                       0,
                       atol=1.e-14)
    assert np.allclose(posterior.covar,
                       posterior_s.sqrt_covar @ posterior_s.sqrt_covar.T,
                       0,
                       atol=1.e-14)
    assert np.allclose(posterior.covar,
                       posterior_q.sqrt_covar @ posterior_q.sqrt_covar.T,
                       0,
                       atol=1.e-14)
    # I'm not sure this is going to be true in all cases. Keep in order to find edge cases
    assert np.allclose(posterior_s.covar, posterior_q.covar, 0, atol=1.e-14)

    # Next create a prediction with a covariance that will cause problems
    prediction = GaussianStatePrediction(
        np.array([[-6.45], [0.7]]), np.array([[1e24, 1e-24], [1e-24, 1e24]]))
    sqrt_prediction = SqrtGaussianState(prediction.state_vector,
                                        np.linalg.cholesky(prediction.covar))

    posterior = updater.update(
        SingleHypothesis(prediction=prediction, measurement=measurement))
    posterior_s = sqrt_updater.update(
        SingleHypothesis(prediction=sqrt_prediction, measurement=measurement))
    posterior_q = qr_updater.update(
        SingleHypothesis(prediction=sqrt_prediction, measurement=measurement))

    # The new posterior will  be
    eval_posterior = GaussianState(
        prediction.mean + kalman_gain
        @ (measurement.state_vector - eval_measurement_prediction.mean),
        np.array([[0.04, 0], [
            0, 1e24
        ]]))  # Accessed by looking through the Decimal() quantities...
    # It's actually [0.039999999999 1e-48], [1e-24 1e24 + 1e-48]] ish

    # Test that the square root form succeeds where the standard form fails
    assert not np.allclose(posterior.covar, eval_posterior.covar, rtol=5.e-3)
    assert np.allclose(posterior_s.sqrt_covar @ posterior_s.sqrt_covar.T,
                       eval_posterior.covar,
                       rtol=5.e-3)
    assert np.allclose(posterior_q.sqrt_covar @ posterior_s.sqrt_covar.T,
                       eval_posterior.covar,
                       rtol=5.e-3)
예제 #9
0
    def _smooth_traj(self, traj, process_noise_std=0.5, measurement_noise_std=1):
        # Get detector
        detector = self._get_detector(traj)

        # Models
        if not isinstance(process_noise_std, (list, tuple, np.ndarray)):
            process_noise_std = [process_noise_std, process_noise_std]
        if not isinstance(measurement_noise_std, (list, tuple, np.ndarray)):
            measurement_noise_std = [measurement_noise_std, measurement_noise_std]
        transition_model = CombinedLinearGaussianTransitionModel(
            [
                ConstantVelocity(process_noise_std[0] ** 2),
                ConstantVelocity(process_noise_std[1] ** 2),
            ]
        )
        measurement_model = LinearGaussian(
            ndim_state=4,
            mapping=[0, 2],
            noise_covar=np.diag(
                [measurement_noise_std[0] ** 2, measurement_noise_std[1] ** 2]
            ),
        )
        # Predictor and updater
        predictor = KalmanPredictor(transition_model)
        updater = KalmanUpdater(measurement_model)
        # Initiator
        state_vector = StateVector([0.0, 0.0, 0.0, 0.0])
        covar = CovarianceMatrix(np.diag([0.0, 0.0, 0.0, 0.0]))
        prior_state = GaussianStatePrediction(state_vector, covar)
        initiator = SimpleMeasurementInitiator(prior_state, measurement_model)
        # Filtering
        track = None
        for i, (timestamp, detections) in enumerate(detector):
            if i == 0:
                tracks = initiator.initiate(detections, timestamp)
                track = tracks.pop()
            else:
                detection = detections.pop()
                prediction = predictor.predict(track.state, timestamp=timestamp)
                hypothesis = SingleHypothesis(prediction, detection)
                posterior = updater.update(hypothesis)
                track.append(posterior)
        # Smoothing
        smoother = KalmanSmoother(transition_model)
        smooth_track = smoother.smooth(track)

        # Create new trajectory
        if traj.is_latlon:
            df = traj.df.to_crs("EPSG:3395")
            df.geometry = [
                Point(state.state_vector[0], state.state_vector[2])
                for state in smooth_track
            ]
            df.to_crs(traj.crs, inplace=True)
        else:
            df = traj.df.copy()
            df.geometry = [
                Point(state.state_vector[0], state.state_vector[2])
                for state in smooth_track
            ]
        new_traj = Trajectory(df, traj.id)
        return new_traj
    noise_covar=np.array([
        [1, 0],  # covariance matrix for Gaussian PDF
        [0, 1]
    ]))

# Specify measurement model for AIS
measurement_model_ais = LinearGaussian(ndim_state=4,
                                       mapping=(0, 2),
                                       noise_covar=np.array([[1, 0], [0, 1]]))

# specify predictors
predictor_radar = KalmanPredictor(transition_model_radar)
predictor_ais = KalmanPredictor(transition_model_ais)

# specify updaters
updater_radar = KalmanUpdater(measurement_model_radar)
updater_ais = KalmanUpdater(measurement_model_ais)

# create prior, both trackers use the same starting point
prior_radar = GaussianState([0, 1, 0, 1],
                            np.diag([1.5, 0.5, 1.5, 0.5]),
                            timestamp=start_time)
prior_ais = GaussianState([0, 1, 0, 1],
                          np.diag([1.5, 0.5, 1.5, 0.5]),
                          timestamp=start_time)

# create list for storing kalman gains
kf_gains_radar = []
kf_gains_ais = []

# create list for storing transition_noise_covar
class kalman_filter_independent_fusion:
    """
    todo
    """
    def __init__(self,
                 start_time,
                 prior: GaussianState,
                 sigma_process_radar=0.01,
                 sigma_process_ais=0.01,
                 sigma_meas_radar=3,
                 sigma_meas_ais=1):
        """
        :param start_time:
        :param prior:
        :param sigma_process_radar:
        :param sigma_process_ais:
        :param sigma_meas_radar:
        :param sigma_meas_ais:
        """
        self.start_time = start_time

        # transition models (process models)
        self.transition_model_radar = CombinedLinearGaussianTransitionModel([
            ConstantVelocity(sigma_process_radar),
            ConstantVelocity(sigma_process_radar)
        ])
        self.transition_model_ais = CombinedLinearGaussianTransitionModel([
            ConstantVelocity(sigma_process_ais),
            ConstantVelocity(sigma_process_ais)
        ])

        # Specify measurement model for radar
        self.measurement_model_radar = LinearGaussian(
            ndim_state=4,  # number of state dimensions
            mapping=(0, 2),  # mapping measurement vector index to state index
            noise_covar=np.array([
                [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
                [0, sigma_meas_radar]
            ]))

        # Specify measurement model for AIS
        self.measurement_model_ais = LinearGaussian(ndim_state=4,
                                                    mapping=(0, 2),
                                                    noise_covar=np.array(
                                                        [[sigma_meas_ais, 0],
                                                         [0, sigma_meas_ais]]))

        # specify predictors
        self.predictor_radar = KalmanPredictor(self.transition_model_radar)
        self.predictor_ais = KalmanPredictor(self.transition_model_ais)

        # specify updaters
        self.updater_radar = KalmanUpdater(self.measurement_model_radar)
        self.updater_ais = KalmanUpdater(self.measurement_model_ais)

        # create prior, both trackers use the same starting point
        self.prior_radar = prior
        self.prior_ais = prior

    def track(self,
              start_time,
              measurements_radar,
              measurements_ais,
              fusion_rate=1):
        """
        returns fused tracks.
        """

        time = start_time

        tracks_radar = Track()
        tracks_ais = Track()
        tracks_fused = []

        measurements_radar = measurements_radar.copy()
        measurements_ais = measurements_ais.copy()
        # loop until there are no more measurements
        while measurements_radar or measurements_ais:
            # get all new measurements
            new_measurements_radar = \
                [measurement for measurement in measurements_radar if measurement.timestamp <= time]
            new_measurements_ais = \
                [measurement for measurement in measurements_ais if measurement.timestamp <= time]

            # remove the new measurements from the measurements lists
            for new_meas in new_measurements_ais:
                measurements_ais.remove(new_meas)
            for new_meas in new_measurements_radar:
                measurements_radar.remove(new_meas)

            # for each new_meas, perform a prediction and an update
            for measurement in new_measurements_ais:
                prediction = self.predictor_ais.predict(
                    self.prior_ais, timestamp=measurement.timestamp)
                hypothesis = SingleHypothesis(prediction, measurement)
                post = self.updater_ais.update(hypothesis)
                tracks_ais.append(post)
                self.prior_ais = tracks_ais[-1]
            for measurement in new_measurements_radar:
                prediction = self.predictor_radar.predict(
                    self.prior_radar, timestamp=measurement.timestamp)
                hypothesis = SingleHypothesis(prediction, measurement)
                post = self.updater_radar.update(hypothesis)
                tracks_radar.append(post)
                self.prior_radar = tracks_radar[-1]

            # perform a prediction up until this time (the newest measurement might not be at this exact time)
            # note that this "prediction" might be the updated posterior, if the newest measurement was at this time
            prediction_radar = self.predictor_radar.predict(self.prior_radar,
                                                            timestamp=time)
            prediction_ais = self.predictor_ais.predict(self.prior_ais,
                                                        timestamp=time)

            # fuse these predictions.
            tracks_fused.append(
                self._fuse_track(prediction_radar, prediction_ais))

            time += timedelta(seconds=fusion_rate)

        return tracks_fused, tracks_radar, tracks_ais

    def _fuse_track(self, track_radar, track_ais):
        """
        fuses the two tracks. Assumes that the tracks have the same timestamp
        """
        # todo check the track-to-track association

        fused_posterior, fused_covar = track_to_track_fusion.fuse_independent_tracks(
            track_radar, track_ais)
        estimate = GaussianState(fused_posterior,
                                 fused_covar,
                                 timestamp=track_radar.timestamp)
        return estimate

    def _fuse_tracks(self, tracks_radar, tracks_ais, fusion_rate=1):
        tracks_fused = []
        for track_radar in tracks_radar:
            # find a track in tracks_radar with the same timestamp
            estimate = track_radar
            for track_ais in tracks_ais:
                if track_ais.timestamp == track_radar.timestamp:
                    # same_target = track_to_track_association.test_association_independent_tracks(track_radar, track_ais,
                    #                                                                              0.01)
                    same_target = True  # ignore association for now
                    if same_target:
                        fused_posterior, fused_covar = track_to_track_fusion.fuse_independent_tracks(
                            track_radar, track_ais)
                        estimate = GaussianState(
                            fused_posterior,
                            fused_covar,
                            timestamp=track_radar.timestamp)
                    break
            tracks_fused.append(estimate)
        return tracks_fused
예제 #12
0
class kalman_filter_independent_fusion:
    """
    todo
    """
    def __init__(self,
                 measurements_radar,
                 measurements_ais,
                 start_time,
                 prior: GaussianState,
                 sigma_process_radar=0.01,
                 sigma_process_ais=0.01,
                 sigma_meas_radar=3,
                 sigma_meas_ais=1):
        # same transition models (radar uses same as original)
        self.transition_model_radar = CombinedLinearGaussianTransitionModel([
            ConstantVelocity(sigma_process_radar),
            ConstantVelocity(sigma_process_radar)
        ])
        self.transition_model_ais = CombinedLinearGaussianTransitionModel([
            ConstantVelocity(sigma_process_ais),
            ConstantVelocity(sigma_process_ais)
        ])
        self.start_time = start_time
        self.measurements_radar = measurements_radar
        self.measurements_ais = measurements_ais

        # Specify measurement model for radar
        self.measurement_model_radar = LinearGaussian(
            ndim_state=4,  # number of state dimensions
            mapping=(0, 2),  # mapping measurement vector index to state index
            noise_covar=np.array([
                [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
                [0, sigma_meas_radar]
            ]))

        # Specify measurement model for AIS
        self.measurement_model_ais = LinearGaussian(ndim_state=4,
                                                    mapping=(0, 2),
                                                    noise_covar=np.array(
                                                        [[sigma_meas_ais, 0],
                                                         [0, sigma_meas_ais]]))

        # specify predictors
        self.predictor_radar = KalmanPredictor(self.transition_model_radar)
        self.predictor_ais = KalmanPredictor(self.transition_model_ais)

        # specify updaters
        self.updater_radar = KalmanUpdater(self.measurement_model_radar)
        self.updater_ais = KalmanUpdater(self.measurement_model_ais)

        # create prior, both trackers use the same starting point
        self.prior_radar = prior
        self.prior_ais = prior

    def track(self):
        self.tracks_radar = Track()
        for measurement in self.measurements_radar:
            prediction = self.predictor_radar.predict(
                self.prior_radar, timestamp=measurement.timestamp)
            hypothesis = SingleHypothesis(prediction, measurement)
            post = self.updater_radar.update(hypothesis)
            self.tracks_radar.append(post)
            self.prior_radar = self.tracks_radar[-1]

        self.tracks_ais = Track()
        for measurement in self.measurements_ais:
            prediction = self.predictor_radar.predict(
                self.prior_ais, timestamp=measurement.timestamp)
            hypothesis = SingleHypothesis(prediction, measurement)
            post = self.updater_ais.update(hypothesis)
            self.tracks_ais.append(post)
            self.prior_ais = self.tracks_ais[-1]

        self.tracks_fused = self._fuse_tracks(self.tracks_radar,
                                              self.tracks_ais)

        return self.tracks_fused, self.tracks_radar, self.tracks_ais

    def _fuse_tracks(self, tracks_radar, tracks_ais):
        tracks_fused = []
        for track_radar in tracks_radar:
            # find a track in tracks_radar with the same timestamp
            estimate = track_radar
            for track_ais in tracks_ais:
                if track_ais.timestamp == track_radar.timestamp:
                    # same_target = track_to_track_association.test_association_independent_tracks(track_radar, track_ais,
                    #                                                                              0.01)
                    same_target = True  # ignore association for now
                    if same_target:
                        fused_posterior, fused_covar = track_to_track_fusion.fuse_independent_tracks(
                            track_radar, track_ais)
                        estimate = GaussianState(
                            fused_posterior,
                            fused_covar,
                            timestamp=track_radar.timestamp)
                    break
            tracks_fused.append(estimate)
        return tracks_fused
예제 #13
0
class KalmanFilterDependentFusionAsyncSensors:
    """
    todo
    """

    def __init__(self, start_time, prior: GaussianState,
                 sigma_process_radar=0.01, sigma_process_ais=0.01, sigma_meas_radar=3, sigma_meas_ais=1):
        """
        :param start_time:
        :param prior:
        :param sigma_process_radar:
        :param sigma_process_ais:
        :param sigma_meas_radar:
        :param sigma_meas_ais:
        """
        self.start_time = start_time

        # same transition models (radar uses same as original)
        self.transition_model_radar = CombinedLinearGaussianTransitionModel(
            [ConstantVelocity(sigma_process_radar), ConstantVelocity(sigma_process_radar)])
        self.transition_model_ais = CombinedLinearGaussianTransitionModel(
            [ConstantVelocity(sigma_process_ais), ConstantVelocity(sigma_process_ais)])

        # same measurement models as used when generating the measurements
        # Specify measurement model for radar
        self.measurement_model_radar = LinearGaussian(
            ndim_state=4,  # number of state dimensions
            mapping=(0, 2),  # mapping measurement vector index to state index
            noise_covar=np.array([[sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
                                  [0, sigma_meas_radar]])
        )

        # Specify measurement model for AIS
        self.measurement_model_ais = LinearGaussian(
            ndim_state=4,
            mapping=(0, 2),
            noise_covar=np.array([[sigma_meas_ais, 0],
                                  [0, sigma_meas_ais]])
        )

        # specify predictors
        self.predictor_radar = KalmanPredictor(self.transition_model_radar)
        self.predictor_ais = KalmanPredictor(self.transition_model_ais)

        # specify updaters
        self.updater_radar = KalmanUpdater(self.measurement_model_radar)
        self.updater_ais = KalmanUpdater(self.measurement_model_ais)

        # create prior, both trackers use the same starting point
        self.prior_radar = prior
        self.prior_ais = prior
        self.cross_cov_list = []

    def track(self, measurements_radar, measurements_ais):
        """
        todo
        :return:
        """
        # create list for storing kalman gains
        kf_gains_radar = []
        kf_gains_ais = []

        # create list for storing transition_noise_covar
        transition_covars_radar = []
        transition_covars_ais = []

        # create list for storing transition matrices
        transition_matrices_radar = []
        transition_matrices_ais = []

        # create list for storing tracks
        tracks_radar = Track()
        tracks_ais = Track()

        # track
        for measurement in measurements_radar:
            prediction = self.predictor_radar.predict(self.prior_radar, timestamp=measurement.timestamp)
            hypothesis = SingleHypothesis(prediction, measurement)
            # calculate the kalman gain
            hypothesis.measurement_prediction = self.updater_radar.predict_measurement(hypothesis.prediction,
                                                                                       measurement_model=self.measurement_model_radar)
            post_cov, kalman_gain = self.updater_radar._posterior_covariance(hypothesis)
            kf_gains_radar.append(kalman_gain)
            # get the transition model covar
            predict_over_interval = measurement.timestamp - self.prior_radar.timestamp
            transition_covars_ais.append(self.transition_model_ais.covar(time_interval=predict_over_interval))
            transition_matrices_ais.append(self.transition_model_ais.matrix(time_interval=predict_over_interval))
            # update
            post = self.updater_radar.update(hypothesis)
            tracks_radar.append(post)
            self.prior_radar = post

        for measurement in measurements_ais:
            prediction = self.predictor_radar.predict(self.prior_ais, timestamp=measurement.timestamp)
            hypothesis = SingleHypothesis(prediction, measurement)
            # calculate the kalman gain
            hypothesis.measurement_prediction = self.updater_ais.predict_measurement(hypothesis.prediction,
                                                                                     measurement_model=self.measurement_model_ais)
            post_cov, kalman_gain = self.updater_ais._posterior_covariance(hypothesis)
            kf_gains_ais.append(kalman_gain)
            # get the transition model covar
            predict_over_interval = measurement.timestamp - self.prior_ais.timestamp
            transition_covars_radar.append(self.transition_model_radar.covar(time_interval=predict_over_interval))
            transition_matrices_radar.append(self.transition_model_radar.matrix(time_interval=predict_over_interval))
            # update
            post = self.updater_ais.update(hypothesis)
            tracks_ais.append(post)
            self.prior_ais = post

        # FOR NOW: run track_to_track_association here, todo change pipeline flow
        # FOR NOW: run the association only when both have a new posterior (so each time the AIS has a posterior)
        # todo handle fusion when one track predicts and the other updates. (or both predicts) (Can't be done with the
        #  theory described in the article)

        cross_cov_ij = [np.zeros([4, 4])]
        cross_cov_ji = [np.zeros([4, 4])]

        # TODO change flow to assume that the indexes decide whether its from the same iterations
        # use indexes to loop through tracks, kf_gains etc

        tracks_fused = [tracks_radar[0]]
        for i in range(1, len(tracks_radar)):
            # we assume that the indexes correlates with the timestamps. I.e. that the lists are 'synchronized'
            # check to make sure
            if tracks_ais[i].timestamp == tracks_radar[i].timestamp:
                # calculate the cross-covariance estimation error
                cross_cov_ji.append(calc_cross_cov_estimate_error(
                    self.measurement_model_ais.matrix(), self.measurement_model_radar.matrix(), kf_gains_ais[i],
                    kf_gains_radar[i],
                    transition_matrices_ais[i], transition_covars_ais[i], cross_cov_ji[i - 1]
                ))
                cross_cov_ij.append(calc_cross_cov_estimate_error(
                    self.measurement_model_radar.matrix(), self.measurement_model_ais.matrix(), kf_gains_radar[i],
                    kf_gains_ais[i],
                    transition_matrices_radar[i], transition_covars_ais[i], cross_cov_ij[i - 1]
                ))
                self.cross_cov_list.append(cross_cov_ij)

                # test for track association
                # same_target = track_to_track_association.test_association_dependent_tracks(tracks_radar[i],
                #                                                                            tracks_ais[i],
                #                                                                            cross_cov_ij[i],
                #                                                                            cross_cov_ji[i], 0.01)
                same_target = True  # ignore test for track association for now
                if same_target:
                    fused_posterior, fused_covar = track_to_track_fusion.fuse_dependent_tracks(tracks_radar[i],
                                                                                               tracks_ais[i],
                                                                                               cross_cov_ij[i],
                                                                                               cross_cov_ji[i])
                    estimate = GaussianState(fused_posterior, fused_covar, timestamp=tracks_ais[i].timestamp)
                    tracks_fused.append(estimate)
        return tracks_fused, tracks_ais, tracks_radar

    def track_async(self, start_time, measurements_radar, measurements_ais, fusion_rate=1):
        """
        Assumptions:
        1) assumes that there are a maximum of one new measurement per sensor per fusion_rate.
        2) assumes that the measurements arrives exactly at the timestep that the fusion is performed.
        3) assumes kf gain of size (4,2)
        """
        # create list for storing tracks
        tracks_radar = Track()
        tracks_ais = Track()
        tracks_fused = []

        time = start_time

        cross_cov_ij = np.zeros([4, 4])
        cross_cov_ji = np.zeros([4, 4])

        measurements_radar = measurements_radar.copy()
        measurements_ais = measurements_ais.copy()
        # loop until there are no more measurements
        while measurements_radar or measurements_ais:
            # get all new measurements
            new_measurements_radar = \
                [measurement for measurement in measurements_radar if measurement.timestamp <= time]
            new_measurements_ais = \
                [measurement for measurement in measurements_ais if measurement.timestamp <= time]

            # remove the new measurements from the measurements lists
            for new_meas in new_measurements_ais:
                measurements_ais.remove(new_meas)
            for new_meas in new_measurements_radar:
                measurements_radar.remove(new_meas)

            # check whether there are more than one measurement per sensor
            if len(new_measurements_ais) > 1 or len(new_measurements_radar) > 1:
                # raise exception
                raise Exception("More than one measurement per sensor per fusion rate")

            # for each sensor, perform a prediction
            prediction_radar = self.predictor_radar.predict(self.prior_radar, timestamp=time)
            prediction_ais = self.predictor_ais.predict(self.prior_ais, timestamp=time)
            # if a new AIS measurement
            if new_measurements_ais:
                measurement = new_measurements_ais[0]
                # calc updated estimate
                hypothesis = SingleHypothesis(prediction_ais, measurement)
                # calc kalman gain
                # calculate the kalman gain
                hypothesis.measurement_prediction = self.updater_ais.predict_measurement(hypothesis.prediction,
                                                                                         measurement_model=self.measurement_model_ais)
                post_cov, kf_gain_ais = self.updater_ais._posterior_covariance(hypothesis)
                # get the transition model covar
                predict_over_interval = measurement.timestamp - self.prior_ais.timestamp
                # calc transition matrix
                transition_covar_ais = self.transition_model_ais.covar(time_interval=predict_over_interval)
                transition_matrix_ais = self.transition_model_ais.matrix(time_interval=predict_over_interval)
                # calc posterior
                post = self.updater_ais.update(hypothesis)
                # append posterior and update prior_ais
                tracks_ais.append(post)
                self.prior_ais = post
            else:
                # calc transition matrix and set kalman gain to 0
                # get the transition model covar
                predict_over_interval = time - self.prior_ais.timestamp
                # calc transition matrix
                transition_covar_ais = self.transition_model_ais.covar(time_interval=predict_over_interval)
                transition_matrix_ais = self.transition_model_ais.matrix(time_interval=predict_over_interval)
                # set kalman gain to 0
                kf_gain_ais = Matrix([[0, 0], [0, 0], [0, 0], [0, 0]])
                # append prediction and update prior_ais
                tracks_ais.append(prediction_ais)
                self.prior_ais = prediction_ais

            # if a new radar measurement
            if new_measurements_radar:
                measurement = new_measurements_radar[0]
                # calc updated estimate
                hypothesis = SingleHypothesis(prediction_radar, measurement)
                # calc kalman gain
                # calculate the kalman gain
                hypothesis.measurement_prediction = self.updater_radar.predict_measurement(hypothesis.prediction,
                                                                                           measurement_model=self.measurement_model_radar)
                post_cov, kf_gain_radar = self.updater_radar._posterior_covariance(hypothesis)
                # get the transition model covar
                predict_over_interval = measurement.timestamp - self.prior_radar.timestamp
                # calc transition matrix
                transition_covar_radar = self.transition_model_radar.covar(time_interval=predict_over_interval)
                transition_matrix_radar = self.transition_model_radar.matrix(time_interval=predict_over_interval)
                # calc posterior
                post = self.updater_radar.update(hypothesis)
                # append posterior and update prior_radar
                self.prior_radar = post
            else:
                # calc transition matrix and set kalman gain to 0
                # get the transition model covar
                predict_over_interval = time - self.prior_radar.timestamp
                # calc transition matrix
                transition_covar_radar = self.transition_model_radar.covar(time_interval=predict_over_interval)
                transition_matrix_radar = self.transition_model_radar.matrix(time_interval=predict_over_interval)
                # set kalman gain to 0
                kf_gain_radar = Matrix([[0, 0], [0, 0], [0, 0], [0, 0]])
                # append prediction and update prior_radar
                self.prior_radar = prediction_radar

            # calculate the cross-covariance
            cross_cov_ij = calc_cross_cov_estimate_error(
                self.measurement_model_radar.matrix(), self.measurement_model_ais.matrix(), kf_gain_radar,
                kf_gain_ais, transition_matrix_radar, transition_covar_radar, cross_cov_ij
            )
            cross_cov_ji = calc_cross_cov_estimate_error(
                self.measurement_model_ais.matrix(), self.measurement_model_radar.matrix(), kf_gain_ais,
                kf_gain_radar, transition_matrix_ais, transition_covar_ais, cross_cov_ji
            )

            same_target = True  # ignore test for track association for now
            if same_target:
                fused_posterior, fused_covar = track_to_track_fusion.fuse_dependent_tracks(self.prior_radar,
                                                                                           self.prior_ais,
                                                                                           cross_cov_ij,
                                                                                           cross_cov_ji)
                estimate = GaussianState(fused_posterior, fused_covar, timestamp=time)
                tracks_fused.append(estimate)
                # try T2TFwoMpF
                # also have to update the cross-covariance
                cross_cov_ij = calc_partial_feedback_cross_cov(self.prior_radar, self.prior_ais, cross_cov_ij,
                                                               cross_cov_ji)
                cross_cov_ji = cross_cov_ij.copy().T  # right??
                # TEMPORARY: try to let prior radar become the fused result, i.e. partial feedback
                self.prior_radar = estimate
                # append to radar tracks
                tracks_radar.append(estimate)

            self.cross_cov_list.append(cross_cov_ij)
            time += timedelta(seconds=fusion_rate)
        return tracks_fused, tracks_radar, tracks_ais
예제 #14
0
def test_information(UpdaterClass, measurement_model, prediction, measurement):
    """Tests the information form of the Kalman filter update step."""

    # This is how the Kalman filter does it
    kupdater = KalmanUpdater(measurement_model)
    kposterior = kupdater.update(SingleHypothesis(prediction, measurement))

    # Create the information state representation
    prediction_precision = np.linalg.inv(prediction.covar)
    info_prediction_mean = prediction_precision @ prediction.state_vector

    info_prediction = InformationStatePrediction(info_prediction_mean,
                                                 prediction_precision)

    # Initialise a information form of the Kalman updater
    updater = UpdaterClass(measurement_model=measurement_model)

    # Perform and assert state update (without measurement prediction)
    posterior = updater.update(
        SingleHypothesis(prediction=info_prediction, measurement=measurement))

    # Check to see if the information matrix is positive definite (i.e. are all the eigenvalues
    # positive?)
    assert (np.all(np.linalg.eigvals(posterior.precision) >= 0))

    # Does the measurement prediction work?
    assert (np.allclose(
        kupdater.predict_measurement(prediction).state_vector,
        updater.predict_measurement(info_prediction).state_vector,
        0,
        atol=1.e-14))

    # Do the
    assert (np.allclose(
        kposterior.state_vector,
        np.linalg.inv(posterior.precision) @ posterior.state_vector,
        0,
        atol=1.e-14))
    assert (np.allclose(kposterior.covar,
                        np.linalg.inv(posterior.precision),
                        0,
                        atol=1.e-14))
    assert (np.array_equal(posterior.hypothesis.prediction, info_prediction))

    assert (np.array_equal(posterior.hypothesis.measurement, measurement))
    assert (posterior.timestamp == prediction.timestamp)

    # test that we can get to the inverse matrix
    class LinearGaussianwithInverse(LinearGaussian):
        def inverse_covar(self, **kwargs):
            return np.linalg.inv(self.covar(**kwargs))

    meas_model_winv = LinearGaussianwithInverse(ndim_state=2,
                                                mapping=[0],
                                                noise_covar=np.array([[0.04]]))
    updater_winv = UpdaterClass(meas_model_winv)

    # Test this still works
    post_from_inv = updater_winv.update(
        SingleHypothesis(prediction=info_prediction, measurement=measurement))
    # and check
    assert (np.allclose(posterior.state_vector,
                        post_from_inv.state_vector,
                        0,
                        atol=1.e-14))

    # Can one force symmetric covariance?
    updater.force_symmetric_covariance = True
    posterior = updater.update(
        SingleHypothesis(prediction=info_prediction, measurement=measurement))

    assert (np.allclose(posterior.precision - posterior.precision.T,
                        np.zeros(np.shape(posterior.precision)),
                        0,
                        atol=1.e-14))
예제 #15
0
class KFFusionUnsyncSensors:
    """
    todo
    """
    def __init__(self, start_time, prior: GaussianState, sigma_process=0.01,
                 sigma_meas_radar=3, sigma_meas_ais=1):
        """

        :param start_time:
        :param prior:
        :param sigma_process:
        :param sigma_meas_radar:
        :param sigma_meas_ais:
        """
        # start time
        self.start_time = start_time

        # transition model
        self.transition_model = CombinedLinearGaussianTransitionModel([ConstantVelocity(sigma_process),
                                                                       ConstantVelocity(sigma_process)])

        # same measurement models as used when generating the measurements
        # Specify measurement model for radar
        self.measurement_model_radar = LinearGaussian(
            ndim_state=4,  # number of state dimensions
            mapping=(0, 2),  # mapping measurement vector index to state index
            noise_covar=np.array([[sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
                                  [0, sigma_meas_radar]])
        )

        # Specify measurement model for AIS
        self.measurement_model_ais = LinearGaussian(
            ndim_state=4,
            mapping=(0, 2),
            noise_covar=np.array([[sigma_meas_ais, 0],
                                  [0, sigma_meas_ais]])
        )

        # specify predictor
        self.predictor = KalmanPredictor(self.transition_model)

        # specify updaters
        self.updater_radar = KalmanUpdater(self.measurement_model_radar)
        self.updater_ais = KalmanUpdater(self.measurement_model_ais)

        # create prior todo move later and probably rename
        self.prior = prior

    def track(self, measurements_radar, measurements_ais, estimation_rate=1):
        """
        Uses the Kalman Filter to fuse the measurements received. Produces a new estimate at each estimation_rate.
        A prediction is performed when no new measurements are received when a new estimate is calculated.

        Note: when estimation_rate is lower than either of the measurements rates, it might not use all measurements
        when updating.

        :param measurements_radar:
        :param measurements_ais:
        :param estimation_rate: How often a new estimate should be calculated.
        """
        time = self.start_time
        tracks_fused = Track()
        tracks_radar = Track()

        # copy measurements
        measurements_radar = measurements_radar.copy()
        measurements_ais = measurements_ais.copy()
        # loop until there are no more measurements
        while measurements_ais or measurements_radar:
            # get all new measurements
            new_measurements_radar = \
                [measurement for measurement in measurements_radar if measurement.timestamp <= time]
            new_measurements_ais = \
                [measurement for measurement in measurements_ais if measurement.timestamp <= time]

            # remove the new measurements from the measurements lists
            for new_meas in new_measurements_ais:
                measurements_ais.remove(new_meas)
            for new_meas in new_measurements_radar:
                measurements_radar.remove(new_meas)

            # sort the new measurements
            new_measurements_radar.sort(key=lambda meas: meas.timestamp, reverse=True)
            new_measurements_ais.sort(key=lambda meas: meas.timestamp, reverse=True)

            while new_measurements_radar or new_measurements_ais:
                if new_measurements_radar and \
                        (not new_measurements_ais or
                         new_measurements_radar[0].timestamp <= new_measurements_ais[0].timestamp):
                    # predict and update with radar measurement
                    new_measurement = new_measurements_radar[0]
                    prediction = self.predictor.predict(self.prior, timestamp=new_measurement.timestamp)
                    hypothesis = SingleHypothesis(prediction, new_measurement)
                    post = self.updater_radar.update(hypothesis)
                    tracks_radar.append(post)
                    # remove measurement
                    new_measurements_radar.remove(new_measurement)
                else:
                    # predict and update with radar measurement
                    new_measurement = new_measurements_ais[0]
                    prediction = self.predictor.predict(self.prior, timestamp=new_measurement.timestamp)
                    hypothesis = SingleHypothesis(prediction, new_measurement)
                    post = self.updater_ais.update(hypothesis)
                    # remove measurement
                    new_measurements_ais.remove(new_measurement)

                # add to fused list
                self.prior = post

            # perform a prediction up until this time (the newest measurement might not be at this exact time)
            # note that this "prediction" might be the updated posterior, if the newest measurement was at this time
            prediction = self.predictor.predict(self.prior, timestamp=time)
            tracks_fused.append(GaussianState(prediction.mean, prediction.covar, prediction.timestamp))

            # increment time
            time += timedelta(seconds=estimation_rate)

        return tracks_fused, tracks_radar

    def plot(self, ground_truth, measurements_radar, measurements_ais, tracks_fused, tracks_radar):
        """
        Is this being used?

        :return:
        """
        # PLOT
        fig = plt.figure(figsize=(10, 6))
        ax = fig.add_subplot(1, 1, 1)
        ax.set_xlabel("$x$")
        ax.set_ylabel("$y$")
        ax.axis('equal')
        ax.plot([state.state_vector[0] for state in ground_truth],
                [state.state_vector[2] for state in ground_truth],
                linestyle="--",
                label='Ground truth')
        ax.scatter([state.state_vector[0] for state in measurements_radar],
                   [state.state_vector[1] for state in measurements_radar],
                   color='b',
                   label='Measurements Radar')
        ax.scatter([state.state_vector[0] for state in measurements_ais],
                   [state.state_vector[1] for state in measurements_ais],
                   color='r',
                   label='Measurements AIS')

        # add ellipses to the posteriors
        for state in tracks_fused:
            w, v = np.linalg.eig(
                self.measurement_model_radar.matrix() @ state.covar @ self.measurement_model_radar.matrix().T)
            max_ind = np.argmax(w)
            min_ind = np.argmin(w)
            orient = np.arctan2(v[1, max_ind], v[0, max_ind])
            ellipse = Ellipse(xy=(state.state_vector[0], state.state_vector[2]),
                              width=2 * np.sqrt(w[max_ind]), height=2 * np.sqrt(w[min_ind]),
                              angle=np.rad2deg(orient),
                              alpha=0.2,
                              color='r')
            ax.add_artist(ellipse)

        for state in tracks_radar:
            w, v = np.linalg.eig(
                self.measurement_model_radar.matrix() @ state.covar @ self.measurement_model_radar.matrix().T)
            max_ind = np.argmax(w)
            min_ind = np.argmin(w)
            orient = np.arctan2(v[1, max_ind], v[0, max_ind])
            ellipse = Ellipse(xy=(state.state_vector[0], state.state_vector[2]),
                              width=2 * np.sqrt(w[max_ind]), height=2 * np.sqrt(w[min_ind]),
                              angle=np.rad2deg(orient),
                              alpha=0.2,
                              color='b')
            ax.add_artist(ellipse)

        # add ellipses to add legend todo do this less ugly
        ellipse = Ellipse(xy=(0, 0),
                          width=0,
                          height=0,
                          color='r',
                          alpha=0.2,
                          label='Posterior Fused')
        ax.add_patch(ellipse)

        ellipse = Ellipse(xy=(0, 0),
                          width=0,
                          height=0,
                          color='b',
                          alpha=0.2,
                          label='Posterior Radar')
        ax.add_patch(ellipse)

        # todo move or remove
        ax.legend()
        ax.set_title("Kalman filter tracking and fusion when AIS is viewed as a measurement")
        fig.show()
        fig.savefig("../results/scenario1/KF_tracking_and_fusion_viewing_ais_as_measurement.svg")