def main(cmd, dataset, run, conf, make_videos): from pathlib import Path if make_videos: from visualize_tracking import render_video from config import DatasetConfig from apply_mask import Masker mask = Masker(dataset) dc = DatasetConfig(dataset) config_path = runs_path / "{}_{}".format(dataset,run) / "world_tracking_optimization.pklz" if config_path.is_file(): config = load(config_path) else: #raise(ValueError("No world tracking optimized configuration exists at {}".format(config_path))) config = WorldTrackingConfig(default_config) calib = Calibration(dataset) munkres = Munkres() ts = Timestamps(dataset) start_stop = None if cmd == "findvids": vidnames = (datasets_path / dataset / "videos").glob('*.mkv') vidnames = [x.stem for x in vidnames] vidnames.sort() outfolder = runs_path / "{}_{}".format(dataset,run) / "tracks_world" mkdir(outfolder) else: vidnames = [cmd] outfolder = Path('./') start_stop = (0,500) for v in vidnames: print_flush(v) out_path = outfolder / (v+'_tracks.pklz') print_flush("Loading data...") det_path = runs_path / "{}_{}".format(dataset,run) / "detections_world" / (v+'_world.csv') detections3D = pd.read_csv(det_path) klt_path = det_path.with_name(det_path.stem + '_klt.pklz') klts = load(klt_path) print_flush("Tracking...") tracks = make_tracks(dataset, v, detections3D, klts, munkres, ts, calib, config, start_stop=start_stop) print_flush("Saving tracks...") save(tracks, out_path) if make_videos: vidpath = datasets_path / dataset / "videos" / (v+'.mkv') print_flush("Rendering video...") render_video(tracks, vidpath, out_path.with_suffix('.mp4'), calib=calib, mask=mask, fps=dc.get('video_fps')) print_flush("Done!")
def main(cmd, dataset, run, conf, make_videos): if make_videos: from visualize_tracking import render_video from config import DatasetConfig from apply_mask import Masker mask = Masker(dataset) dc = DatasetConfig(dataset) config_path = "{rp}{ds}_{rn}/world_tracking_optimization.pklz".format(rp=runs_path, ds=dataset, rn=run) if isfile(config_path): config = load(config_path) else: #raise(ValueError("No world tracking optimized configuration exists at {}".format(config_path))) config = WorldTrackingConfig(default_config) calib = Calibration(dataset) munkres = Munkres() ts = Timestamps(dataset) start_stop = None if cmd == "findvids": from glob import glob vidnames = glob('{dsp}{ds}/videos/*.mkv'.format(dsp=datasets_path, ds=dataset)) vidnames = [right_remove(x.split('/')[-1], '.mkv') for x in vidnames] vidnames.sort() outfolder = '{}{}_{}/tracks_world/'.format(runs_path, dataset, run) mkdir(outfolder) else: vidnames = [cmd] outfolder = './' start_stop = (0,500) for v in vidnames: print_flush(v) out_path = "{of}{v}_tracks.pklz".format(of=outfolder, v=v) print_flush("Loading data...") det_path = "{rp}{ds}_{rn}/detections_world/{v}_world.csv".format(rp=runs_path, ds=dataset, rn=run, v=v) detections3D = pd.read_csv(det_path) klt_path = det_path.replace('.csv', '_klt.pklz') klts = load(klt_path) print_flush("Tracking...") tracks = make_tracks(dataset, v, detections3D, klts, munkres, ts, calib, config, start_stop=start_stop) print_flush("Saving tracks...") save(tracks, out_path) if make_videos: vidpath = "{dsp}{ds}/videos/{v}.mkv".format(dsp=datasets_path, ds=dataset, v=v) print_flush("Rendering video...") render_video(tracks, vidpath, out_path.replace('.pklz','.mp4'), calib=calib, mask=mask, fps=dc.get('video_fps')) print_flush("Done!")
def get_shop(callback): if hasattr(storage, 'id'): # If logged in print(f'Shop ok: id = {storage.id}') print('Shop sending:', storage.id) res = storage.load('/shop', { 'action': 'get-state', 'id': storage.id, }) print(res) if (res['status'] == 'OK'): callback.Call({ 'id': storage.id, 'shop': res['shop'], 'amount': res['amount'], }) else: print('Shop: Error "Bad shop requests"') else: # Any case when user not logged in print('Shop Error: storage has no \'id\' property.')
def validate_token(auth): full_repos_name = auth.get('repository', '').split('/') if len(full_repos_name) != 2: logger.debug('validate_token: Invalid repository field') return False cfg = config.load() index_endpoint = cfg.index_endpoint if index_endpoint is None: index_endpoint = 'https://index.docker.io' index_endpoint = index_endpoint.strip('/') url = '{0}/v1/repositories/{1}/{2}/images'.format(index_endpoint, full_repos_name[0], full_repos_name[1]) headers = {'Authorization': flask.request.headers.get('authorization')} resp = requests.get(url, verify=True, headers=headers) logger.debug('validate_token: Index returned {0}'.format(resp.status_code)) if resp.status_code != 200: return False store = storage.load() try: images_list = [i['id'] for i in json.loads(resp.text)] store.put_content(store.images_list_path(*full_repos_name), json.dumps(images_list)) except json.JSONDecodeError: logger.debug('validate_token: Wrong format for images_list') return False return True
def _generate_index(self, session): store = storage.load() Base.metadata.create_all(self._engine) session.add(Version(id=self.version)) for repository in self._walk_storage(store=store): session.add(Repository(**repository)) session.commit()
def getall(): data = request.json keys=getkeys() results = { k : load(k) for k in keys } for k in results : results[k]['key']=k results = { 'data' : [ results[k] for k in results ] } return jsonify(results)
def _query(configuration, restrict='title', select=None): books = storage.load(configuration, 'library') if select is None: return books else: return [book for book in books if restrict in book.keys() and select.upper() in unicode(book[restrict]).upper()]
def get_world_tracking_config(dataset_name, run_name): dataset_name, run_name = map(quote, (dataset_name, run_name)) path = "{rp}{dn}_{r}/world_tracking_optimization.pklz".format(rp=runs_path, dn=dataset_name, r=run_name) if isfile(path): wtc = load(path) return (wtc.get_dict(), 200) else: return (NoContent, 404)
def execute(self): books = storage.load(self._configuration, 'library') fields = set() for book in books: for field in book.keys(): if field[0] is not '_': fields.add(field) self.out('\n'.join(fields)) return None, None
def _query(configuration, restrict='title', select=None): books = storage.load(configuration, 'library') if select is None: return books else: return [ book for book in books if restrict in book.keys() and select.upper() in unicode(book[restrict]).upper() ]
def generateClassesAccuracies(filePath): """ generate csv containing accuracy per class """ filename = filePath.stem processedJAFFE = load(str(filePath)) processedDF = pd.DataFrame(processedJAFFE) processedDF.columns = ['name', 'data', 'emotion'] processedDF = processedDF.sort_values(by=['name', 'emotion']) grouped = processedDF.groupby(['name', 'emotion']) train = grouped.nth([0, 1]) test = grouped.nth([2, 3, 4]) yTrain = train.index.get_level_values(1).tolist() xTrain = train.values.ravel().tolist() yTest = test.index.get_level_values(1).tolist() xTest = test.values.ravel().tolist() cgamma = [ (2e-3, 1e-2), (1e-2, 1e-3), (1e-1, 1.1e-4), (1e-1, 7e-5), (1e+1, 1e-6), (1e+2, 1e-7), ] output = [] output.append(['C', 'Gamma', 'AN', 'DI', 'FE', 'HA', 'NE', 'SA', 'SU']) for C, gamma in cgamma: row = [C, gamma] print('C = %s \t gamma = %s' % (C, gamma)) svc = OneVsRestClassifier(SVC(random_state=0, decision_function_shape='ovr', C=C, kernel='rbf', gamma=gamma), n_jobs=4) svc.fit(xTrain, yTrain) yTrue, yPred = yTest, svc.predict(xTest) yTrue = np.array(yTrue, dtype=np.unicode_) yPred = np.array(yPred, dtype=np.unicode_) correct = np.sum(yTrue == yPred) print("accuracy: %d/%d = " % (correct, len(yTrue)), D('%.2f' % (correct / len(yTrue) * 100))) report = classification_report(yTrue, yPred, output_dict=True) row.append(report['AN']['precision']) row.append(report['DI']['precision']) row.append(report['FE']['precision']) row.append(report['HA']['precision']) row.append(report['NE']['precision']) row.append(report['SA']['precision']) row.append(report['SU']['precision']) output.append(row) with open('../csv/%s_precision.csv' % filename, 'w') as csvFile: writer = csv.writer(csvFile) writer.writerows(output)
def get_world_tracking_config(dataset_name, run_name): dataset_name, run_name = map(quote, (dataset_name, run_name)) path = runs_path / "{}_{}".format( dataset_name, run_name) / "world_tracking_optimization.pklz" if path.is_file(): wtc = load(path) return (wtc.get_dict(), 200) else: return (NoContent, 404)
def load(self, filename): """ save current state of todos list Args: filename: string Returns: Boolean """ pyobj = storage.load(filename) self._id = pyobj["_id"] self.id_to_todo = pyobj["id_to_todo"] return True
def send_login(login, password, callback): res = storage.load('/login', { 'login': login, 'password': password, 'type': 'login', }) if res['status'] == 'OK': storage.id = res['id'] callback.Call(res)
def get_levels(callback): res = storage.load('/login', { 'id': storage.id, 'type': 'levels', 'login': '', 'password': '', }) if res['status'] == 'OK': storage.level = res['levels'] callback.Call(res['levels'])
def provision_from_storage(key, value, app_name, namespace): """Provisions a resource for a property specified from storage.""" raw_manifest = storage.load(value) manifest = yaml.safe_load(raw_manifest) if 'metadata' not in manifest: manifest['metadata'] = {} resource_name = dns1123_name("{}-{}".format(app_name, key)) manifest['metadata']['name'] = resource_name manifest['metadata']['namespace'] = namespace return resource_name, add_preprovisioned_labels([manifest], key)
def register(login: str, password: str, callback): print('Register sending:', login, password) res = storage.load(f'/register', { 'login': login, 'password': password, }) if (res['status'] == 'OK'): storage.id = res['id'] callback.Call(res['status'])
def get(): data = request.json keys=getkeys() results = [] for k in keys : value = load(k) match = search(data, value) if match > threshold : results.append((value, match)) result = jsonify({'data': [ i[0] for i in sorted(results, key=lambda tup : tup[-1]) ]}) print(result.data) return result
def wrapper(namespace, repository, *args, **kwargs): cfg = config.load() mirroring_cfg = cfg.mirroring resp = f(namespace, repository, *args, **kwargs) if not mirroring_cfg: return resp source = mirroring_cfg['source'] tags_cache_ttl = mirroring_cfg.get('tags_cache_ttl', DEFAULT_CACHE_TAGS_TTL) if resp.status_code != 404: logger.debug('Status code is not 404, no source ' 'lookup required') return resp if not cache.redis_conn: # No tags cache, just return logger.warning('mirroring: Tags cache is disabled, please set a ' 'valid `cache\' directive in the config.') source_resp = lookup_source( flask.request.path, stream=False, source=source ) if not source_resp: return resp return toolkit.response(data=source_resp.content, headers=source_resp.headers, raw=True) store = storage.load() request_path = flask.request.path if request_path.endswith('/tags'): # client GETs a list of tags tag_path = store.tag_path(namespace, repository) else: # client GETs a single tag tag_path = store.tag_path(namespace, repository, kwargs['tag']) data = cache.redis_conn.get('{0}:{1}'.format( cache.cache_prefix, tag_path )) if data is not None: return toolkit.response(data=data, raw=True) source_resp = lookup_source( flask.request.path, stream=False, source=source ) if not source_resp: return resp data = source_resp.content cache.redis_conn.setex('{0}:{1}'.format( cache.cache_prefix, tag_path ), tags_cache_ttl, data) return toolkit.response(data=data, headers=source_resp.headers, raw=True)
def create_game(callback): res = storage.load('/create-game', { 'id': storage.id, }) if res['status'] == 'OK': print('Create Game: respond OK') print('Create Game: SID =', res['sid']) storage.sid = res['sid'] storage.run_server() res = storage.load( '/game', { 'action': 'connect', 'id': storage.id, 'sid': storage.sid, 'host': f'{storage.host}:{storage.port}', }) if res['status'] == 'OK': storage.connection_count = res['connection_count'] callback.Call(res)
def login(login: str, password: str, callback): print('Login sending:', login, password) res = storage.load('/login', { 'login': login, 'password': password, }) print(res) if (res['status'] == 'OK'): storage.id = res['id'] callback.Call(res['status'])
def storage_status(): message = '' try: _storage = storage.load(_config.storage) key = toolkit.gen_random_string() value = toolkit.gen_random_string() _storage.put_content(key, value) stored_value = _storage.get_content(key) _storage.remove(key) if value != stored_value: message = 'Set value is different from what was received' except Exception as e: message = str(e) return {'storage': message}
def __init__(self, nickname, server, port=6667): SingleServerIRCBot.__init__(self, [(server, port)], nickname, nickname) self.ircobj.add_global_handler("all_events", self.dispatcher, 0) self.logged_in = False loghandler.Handler(self) self.storage = storage.load() self.storage.dirty_cb = self.storage_dirty_cb self.ipc = ipc.ListeningConnection(self.ircobj) self.timers = [] Dekisu.instance = self Timer.bot = self
def shop_select(slider_name, product_name, callback): res = storage.load( '/shop', { 'action': 'select', 'id': storage.id, 'slider': slider_name, 'product': product_name, }) if res['status'] == 'OK': callback.Call(res) else: print( f'Shop: Error "Bad product select request ({slider_name}, {product_name})"' )
def docker_pull(self, namespace, repos): # Test pull # Docker -> Index resp = requests.get('{0}/v1/repositories/{1}/{2}/images'.format( self.index_endpoint, namespace, repos), auth=tuple(self.user_credentials), headers={'X-Docker-Token': 'true'}) self.assertEqual(resp.status_code, 200) token = resp.headers.get('x-docker-token') # Here we should use the 'X-Endpoints' returned in a real environment # Docker -> Registry resp = requests.get('{0}/v1/repositories/{1}/{2}/tags/latest'.format( self.registry_endpoint, namespace, repos), headers={'Authorization': 'Token ' + token}) self.assertEqual(resp.status_code, 200, resp.text) self.cookies = resp.cookies # Docker -> Registry image_id = json.loads(resp.text) resp = requests.get('{0}/v1/images/{1}/ancestry'.format( self.registry_endpoint, image_id), cookies=self.cookies) self.update_cookies(resp) self.assertEqual(resp.status_code, 200, resp.text) ancestry = json.loads(resp.text) # We got the ancestry, let's fetch all the images there for image_id in ancestry: json_data, checksum, blob = self.fetch_image(image_id) # check queried checksum and local computed checksum from the image # are the same tmpfile = StringIO.StringIO() tmpfile.write(blob) tmpfile.seek(0) computed_checksum = checksums.compute_simple(tmpfile, json_data) tmpfile.close() self.assertEqual(checksum, computed_checksum) # Remove image tags resp = requests.delete('{0}/v1/repositories/{1}/{2}/tags'.format( self.registry_endpoint, namespace, repos), cookies=self.cookies) self.assertEqual(resp.status_code, 200, resp.text) self.update_cookies(resp) # Remove image_id, then parent_id store = storage.load() store.remove(os.path.join(store.images, self.image_id)) store.remove(os.path.join(store.images, self.parent_id))
def shop_buy(slider_name, product_name, callback): res = storage.load( '/shop', { 'action': 'buy', 'id': storage.id, 'slider': slider_name, 'product': product_name, }) if res['status'] == 'OK': callback.Call(res) elif res['status'] == 'Deprecated': callback.Call(res) print(f'Shop: Deal deprecated because of small amount') else: print( f'Shop: Error "Bad product select request ({slider_name}, {product_name})"' )
def connect_game(sid, callback): storage.sid = sid print('Connect Game: SID =', storage.sid) storage.run_server() res = storage.load( '/game', { 'action': 'connect', 'id': storage.id, 'sid': storage.sid, 'host': f'{storage.host}:{storage.port}', }) if res['status'] == 'OK': storage.connection_count = res['connection_count'] callback.Call(res)
def __init__(self, configuration): term = configuration['terminal'] self._configuration = configuration try: db = storage.load(configuration, 'isbndb') self._rate = db['rate'] if self._rate.date < date.today(): term.debug("Resetting limit, expired %s" % self._rate.date) self._rate = Rate(limit=configuration['isbndb']['limit'], date=date.today()) except: self._rate = Rate(limit=configuration['isbndb']['limit'], date=date.today()) if self._rate is not None: term.debug('%s ISBNDB requests permitted on %s.', self._rate.limit, self._rate.date) else: term.debug('ISBNDB requests not limited.')
def load_graph(fname): """ Loads a graph from the given file """ sav = storage.load(fname) ver = sav['version'] SAVE_FORMAT_VERSION = 5 if ver > SAVE_FORMAT_VERSION: print "File format version {} incompatible!".format(ver) sys.exit() leaf = sav['leaf'] tree = sav['tree'] filt = sav['filtration'] remv = sav['removed-edges'] prun = sav['pruned'] return leaf, tree, filt, remv, prun
def format_tracks_from_file(tpath, tracks_format, coords='pixels'): if tracks_format == 'custom_text': convert_track = convert_track_custom_text elif tracks_format == 'csv': convert_track = convert_track_csv else: raise (ValueError('Tracks format {} is invalid'.format(tracks_format))) if tpath.is_file(): tracks = load(tpath) text = "" tracks.sort(key=lambda x: x.id) for i_track, track in enumerate(tracks): text += convert_track(track, coords, i_track) return text else: raise (FileNotFoundError('Track {} not found'.format(tpath)))
def wrapper(*args, **kwargs): cfg = config.load() mirroring_cfg = cfg.mirroring resp = f(*args, **kwargs) if not mirroring_cfg: return resp source = mirroring_cfg['source'] if index_route: source = mirroring_cfg.get('source_index', source) logger.debug('Source provided, registry acts as mirror') if resp.status_code != 404: logger.debug('Status code is not 404, no source ' 'lookup required') return resp source_resp = lookup_source( flask.request.path, stream=stream, source=source ) if not source_resp: return resp store = storage.load() if not stream: logger.debug('JSON data found on source, writing response') resp_data = source_resp.content if cache: store_mirrored_data( resp_data, flask.request.url_rule.rule, kwargs, store ) return toolkit.response( data=resp_data, headers=source_resp.headers, raw=True ) logger.debug('Layer data found on source, preparing to ' 'stream response...') layer_path = store.image_layer_path(kwargs['image_id']) return _handle_mirrored_layer(source_resp, layer_path, store)
def traintestsplit(filepath): """ split data into train/test subsets """ proba1 = load(filepath) processedDF = pd.DataFrame(proba1) # sort emotion dictionary and get its values processedDF[1] = processedDF[1].apply(lambda y: sorted(y.items(), key=lambda x: x[0])) processedDF[1] = processedDF[1].apply(lambda y: list(map(lambda x: x[1], y))) processedDF.columns = ['name', 'data', 'emotion'] processedDF = processedDF.sort_values(by=['name', 'emotion']) grouped = processedDF.groupby(['name', 'emotion']) # split train and test data train = grouped.nth([0, 1]) test = grouped.nth([2, 3, 4]) _yTrain = train.index.get_level_values(1).tolist() _xTrain = train.values.ravel().tolist() _yTest = test.index.get_level_values(1).tolist() _xTest = test.values.ravel().tolist() return _xTrain, _yTrain, _xTest, _yTest
def extractProbabilities(filePath, C, gamma): """ build dataset containing the probabilities of each class of every image in the test set from the original dataset """ filename = filePath.stem processedJAFFE = load(str(filePath)) processedDF = pd.DataFrame(processedJAFFE) processedDF.columns = ['name', 'data', 'emotion'] processedDF = processedDF.sort_values(by=['name', 'emotion']) grouped = processedDF.groupby(['name', 'emotion']) # extract train data train = grouped.nth([0, 1]) yTrain = train.index.get_level_values(1).tolist() xTrain = train.values.ravel().tolist() # train our model svc = OneVsRestClassifier(SVC(random_state=0, decision_function_shape='ovr', C=C, kernel='rbf', gamma=gamma, probability=True), n_jobs=4) svc.fit(xTrain, yTrain) classes = svc.classes_ for index, (_name, data, _emotion) in enumerate(processedJAFFE): proba = svc.predict_proba(data.reshape(1, -1))[0] processedJAFFE[index][1] = dict(zip(classes, proba)) pprint(processedJAFFE[index]) print(svc.predict(data.reshape(1, -1))) print('-' * 50) newFilename = filename + '_probabilities_c_%s_gamma_%s' % (C, gamma) print('saving file:', '/data/%s' % newFilename) save('../data/probabilities/%s' % newFilename, processedJAFFE)
import storage count = storage.load() print "Total patterns: ", len(storage.TREE.patterns) print "Total messages: ", count
def setUp(self): self._storage = storage.load("selectel")
def _load_map_points_from_model(self): model = storage.load(self._args.model)[0] return model.normalized_observed_reductions
def setUp(self): self._storage = storage.load('local')
saveload_group = parser.add_mutually_exclusive_group() saveload_group.add_argument('-l', '--load', help="Load saved analyzed" " data instead of graph file", action='store_true') saveload_group.add_argument('-s', '--save', help="Save analyzed data in pickle", type=str, default="") saveload_group.add_argument('-r', '--reanalyze', help="Reanalyzes the given" " file, i.e. does everything except calculating" " the tree layout.", action='store_true') args = parser.parse_args() print "Loading file." if args.load or args.reanalyze: sav = storage.load(args.INPUT) horton_strahler = sav['horton-strahler-index'] shreve = sav['shreve-index'] tree_asymmetry = sav['tree-asymmetry'] tree_asymmetry_no_ext = sav['tree-asymmetry-no-ext'] areas = sav['tree-areas'] marked_tree = sav['marked-tree'] marked_tree_no_ext = sav['marked-tree-no-ext'] tree_pos = sav['tree-positions'] graph_file = sav['graph-file'] leaf, tree, filt, remv, prun = load_graph(graph_file) else: graph_file = args.INPUT
def setUp(self): self._cfg = config.load() conn = boto.connect_s3(self._cfg.s3_access_key, self._cfg.s3_secret_key) conn.create_bucket(self._cfg.s3_bucket) self._storage = storage.load('s3')
def load_memory(): filename = QtGui.QFileDialog.getLoadFileName(self, "Load memory", filter="Memory (*.mem)") if filename: memory.set_frames(storage.load(filename)) recall_behavior.reset()
def load_state(self): self.voted_for, self.current_term, self.log = storage.load(self.id) # print "voted for", self.voted_for print self.current_term print self.log
def setUp(self): self._storage = storage.load('s3')
improvise_params, preferred_location, MAX_NOVELTY) improvise_params = ImproviseParameters() improvise_params.set_values_from_args(args) improvise_behaviors = { model_name: _create_improvise_behavior(model_name) for model_name in MODELS} set_up_logging() index = 0 memory = Memory() if args.memory: memory.set_frames(storage.load(args.memory)) recall_behavior = RecallBehavior() master_behavior = MasterBehavior() avatar = Avatar(index, master_entity, master_behavior) def clear_memory(): recall_behavior.reset() memory.clear() avatars = [avatar] application = Application( students[args.model], avatars, args, receive_from_pn=True, create_entity=create_entity, z_up=Z_UP) set_model(args.model) set_max_angular_step(args.max_angular_step)
def main(): if len(sys.argv) == 1: parser.print_help() exit args = parser.parse_args() if args.fib: for x in fib.generate_fib_sequence(args.fib): print x if args.sto: storage = storage.Storage() while input != "exit": input = raw_input("Enter command:") items = input.split() if len(items) == 0: print "Command required" continue command = items[0] del(items[0]) if command == "add": for x in items: storage.add(x) elif command == "remove": for x in items: storage.remove(x) elif command == "find": for x in items: storage.find(x) elif command == "list": storage.list() elif command == "save": print items[0] storage.save(items[0]) elif command == "load": storage.load(items[0]) elif command == "grep": storage.grep(items[0]) elif command != "exit": print "Invalid command" if args.text: try: with open(args.text, "r") as file: text = file.read() except IOError: print "File {} doesn't exist".format(args.text) print "Average wordcount:{}".format(text_statistics.average_wordcount(text)) print "Median wordcount: {}".format(text_statistics.median_wordcount(text)) print "Word count: {}".format(text_statistics.count_words(text)) try: n = raw_input("Enter N:") number = raw_input("Enter K:") print "Top {0} of {1}-grams is:".format(number, n) print text_statistics.top_ngrams(text, int(n), int(number)) except ValueError: print "Invalid input. Integer required!" if args.sort: try: with open(args.sort, "r") as file: ara = file.read().replace("\n", "").replace(" ", "").split(",") ara = map(int, ara) except IOError: print "File {} doesn't exist".format(args.sort) print "quick sort" sort.demo(ara, sort.quick_sort) print "merge sort" sort.demo(ara, sort.merge_sort) print "radix sort" sort.demo(ara, sort.radix_sort)
#!/usr/bin/python import sys import resources import storage from twisted.internet.protocol import DatagramProtocol from twisted.web import server from twisted.application import service, internet from twisted.python import log from django.conf import settings storage.load() settings.configure(TEMPLATE_DIRS=('templates',)) class UDPServer(DatagramProtocol): def datagramReceived(self, datagram, address): data = datagram.strip().decode('cp1251') storage.put(data) class Service(service.Service): def startService(self): log.startLogging(sys.stdout) service.Service.startService(self) log.msg('ErrorDigest server started') _topService = service.MultiService() _service = Service() _service.setServiceParent(_topService)
def setUp(self): self._storage = storage.load('swift') self._storage._swift_connection.put_container( self._storage._swift_container )
def setUp(self): self._storage = storage.load("local")
import datetime import functools import logging import time import flask import simplejson as json import checksums import storage import toolkit from .app import app store = storage.load() logger = logging.getLogger(__name__) def require_completion(f): """This make sure that the image push correctly finished.""" @functools.wraps(f) def wrapper(*args, **kwargs): if store.exists(store.image_mark_path(kwargs['image_id'])): return toolkit.api_error('Image is being uploaded, retry later') return f(*args, **kwargs) return wrapper def set_cache_headers(f): """Returns HTTP headers suitable for caching."""
def setUp(self): self._storage = storage.load('gcs')