예제 #1
0
 def test_single_value(self):
     expected = {
         'slope_data': [[86.8, 65.36]],
         'range_data': [65.36],
         'average_data': [65.36]
     }
     data_series = [[86.8, 65.36]]
     actual = DataTreatment.data_treatment(data_series)
     self.assertEqual(expected, actual)
예제 #2
0
 def test_float_int_mix(self):
     expected = {
         'slope_data': [[5, 12.7], [96.66, 7], [639.568, 5.3], [4, 6]],
         'range_data': [12.7, 7, 5.3, 6],
         'average_data': [12.7, 7, 5.3, 6]
     }
     data_series = [[5, 12.7], [96.66, 7], [639.568, 5.3], [4, 6]]
     actual = DataTreatment.data_treatment(data_series)
     self.assertEqual(expected, actual)
예제 #3
0
 def test_integer_series(self):
     expected = {
         'slope_data': [[1, 5], [66, 2], [12, 98], [74, 669], [33, 66]],
         'range_data': [5, 2, 98, 669, 66],
         'average_data': [5, 2, 98, 669, 66]
     }
     data_series = [[1, 5], [66, 2], [12, 98], [74, 669], [33, 66]]
     actual = DataTreatment.data_treatment(data_series)
     self.assertEqual(expected, actual)
예제 #4
0
    def data_event(self, executor):
        self.logger.debug("Event received")

        if executor.terminated:
            self._push_to_db(executor)
        else:
            workload = '.'.join(executor.current_workload.split('.')[1:6])
            if 'metrics' not in executor.metadata:
                executor.metadata['metrics'] = {}

            steady_state = True
            metrics = {}
            for metric in ('lat_ns.mean', 'iops', 'bw'):
                metrics[metric] = {}
                for io_type in ('read', 'write'):
                    metrics[metric][io_type] = {}

                    series = self._lookup_prior_data(executor, metric, io_type)
                    series = self._convert_timestamps_to_samples(
                        executor, series)
                    steady = self._evaluate_prior_data(
                        series, executor.steady_state_samples)

                    self.logger.debug("Steady state for %s %s: %s" %
                                      (io_type, metric, steady))

                    metrics[metric][io_type]['series'] = series
                    metrics[metric][io_type]['steady_state'] = steady
                    treated_data = DataTreatment.data_treatment(series)

                    metrics[metric][io_type]['slope'] = \
                        math.slope(treated_data['slope_data'])
                    metrics[metric][io_type]['range'] = \
                        math.range_value(treated_data['range_data'])
                    average = math.average(treated_data['average_data'])
                    metrics[metric][io_type]['average'] = average

                    metrics_key = '%s.%s.%s' % (workload, io_type, metric)
                    executor.metadata['metrics'][metrics_key] = average

                    if not steady:
                        steady_state = False

            if 'report_data' not in executor.metadata:
                executor.metadata['report_data'] = {}

            if 'steady_state' not in executor.metadata:
                executor.metadata['steady_state'] = {}

            executor.metadata['report_data'][workload] = metrics
            executor.metadata['steady_state'][workload] = steady_state

            workload_name = executor.current_workload.split('.')[1]

            if steady_state and not workload_name.startswith('_'):
                executor.terminate_current_run()
예제 #5
0
 def test_negative_values(self):
     expected = {
         'slope_data': [[-15, 5.56], [41.3, -278], [41.3, -98],
                        [78.336, -0.12], [33.667, 66]],
         'range_data': [5.56, -278, -98, -0.12, 66],
         'average_data': [5.56, -278, -98, -0.12, 66]
     }
     data_series = [[-15, 5.56], [41.3, -278], [41.3, -98], [78.336, -0.12],
                    [33.667, 66]]
     actual = DataTreatment.data_treatment(data_series)
     self.assertEqual(expected, actual)
예제 #6
0
 def test_float_series(self):
     expected = {
         'slope_data': [[5.6, 12.7], [96.66, 78.212], [639.568, 5.3],
                        [4.65, 6.667]],
         'range_data': [12.7, 78.212, 5.3, 6.667],
         'average_data': [12.7, 78.212, 5.3, 6.667]
     }
     data_series = [[5.6, 12.7], [96.66, 78.212], [639.568, 5.3],
                    [4.65, 6.667]]
     actual = DataTreatment.data_treatment(data_series)
     self.assertEqual(expected, actual)
예제 #7
0
def steady_state(data_series):
    """
    This function seeks to detect steady state given on a measurement
    window given the data series of that measurement window following
    the pattern : [[x1,y1], [x2,y2], ..., [xm,ym]]. m represents the number
    of points recorded in the measurement window, x which represents the
    time, and y which represents the Volume performance variable being
    tested e.g. IOPS, latency...
    The function returns a boolean describing wether or not steady state
    has been reached with the data that is passed to it.
    """

    logger = logging.getLogger('storperf.utilities.steady_state')

    # Pre conditioning the data to match the algorithms
    treated_data = DataTreatment.data_treatment(data_series)

    # Calculating useful values invoking dedicated functions
    slope_value = math.slope(treated_data['slope_data'])
    range_value = math.range_value(treated_data['range_data'])
    average_value = math.average(treated_data['average_data'])

    if (slope_value is not None and range_value is not None
            and average_value is not None):
        # Verification of the Steady State conditions following the SNIA
        # definition
        range_condition = abs(range_value) <= 0.20 * abs(average_value)
        slope_condition = abs(slope_value) <= 0.10 * abs(average_value)

        steady_state = range_condition and slope_condition

        logger.debug("Range %s <= %s?" % (abs(range_value),
                                          (0.20 * abs(average_value))))
        logger.debug("Slope %s <= %s?" % (abs(slope_value),
                                          (0.10 * abs(average_value))))
        logger.debug("Steady State? %s" % steady_state)
    else:
        steady_state = False

    return steady_state
예제 #8
0
 def test_empty_series(self):
     expected = {'slope_data': [], 'range_data': [], 'average_data': []}
     data_series = []
     actual = DataTreatment.data_treatment(data_series)
     self.assertEqual(expected, actual)