예제 #1
0
    def runJob(self, eng):
        num_subsystem = 8
        prog = sf.Program(num_subsystem, name="remote_job")
        U = random_interferometer(4)
        with prog.context as q:
            # Initial squeezed states
            # Allowed values are r=1.0 or r=0.0
            ops.S2gate(1.0) | (q[0], q[4])
            ops.S2gate(1.0) | (q[1], q[5])
            ops.S2gate(1.0) | (q[3], q[7])

            # Interferometer on the signal modes (0-3)
            ops.Interferometer(U) | (q[0], q[1], q[2], q[3])
            ops.BSgate(0.543, 0.123) | (q[2], q[0])
            ops.Rgate(0.453) | q[1]
            ops.MZgate(0.65, -0.54) | (q[2], q[3])

            # *Same* interferometer on the idler modes (4-7)
            ops.Interferometer(U) | (q[4], q[5], q[6], q[7])
            ops.BSgate(0.543, 0.123) | (q[6], q[4])
            ops.Rgate(0.453) | q[5]
            ops.MZgate(0.65, -0.54) | (q[6], q[7])

            ops.MeasureFock() | q


        eng = eng
        results =eng.run(prog, shots=10)
        # state = results.state
        # measurements = results.samples
        return results.samples
예제 #2
0
    def test_equivalence_different_params(self, compare_params):
        """Programs with different parameters differ."""
        prog_1 = sf.Program(2)
        prog_2 = sf.Program(2)

        with prog_1.context as q:
            ops.Fock(2) | q[0]
            ops.BSgate() | (q[0], q[1])
            ops.MeasureFock() | q[1]

        with prog_2.context as q:
            ops.Fock(1) | q[0]  # different parameter
            ops.BSgate() | (q[0], q[1])
            ops.MeasureFock() | q[1]

        if compare_params:
            # should NOT be equivalent
            assert not prog_1.equivalence(prog_2,
                                          compare_params=compare_params)
            assert not prog_2.equivalence(prog_1,
                                          compare_params=compare_params)
        else:
            # should be equivalent
            assert prog_1.equivalence(prog_2, compare_params=compare_params)
            assert prog_2.equivalence(prog_1, compare_params=compare_params)
예제 #3
0
    def test_generate_code_with_engine(self, engine_kwargs):
        """Test generating code for a regular program with an engine"""
        prog = sf.Program(3)
        eng = sf.Engine(**engine_kwargs)

        with prog.context as q:
            ops.Sgate(0.54, 0) | q[0]
            ops.BSgate(0.45, np.pi / 2) | (q[0], q[2])
            ops.Sgate(3 * np.pi / 2, 0) | q[1]
            ops.BSgate(2 * np.pi, 0.62) | (q[0], q[1])
            ops.MeasureFock() | q[0]

        results = eng.run(prog)

        code = io.generate_code(prog, eng)

        code_list = code.split("\n")
        formatting_str = f"\"{engine_kwargs['backend']}\""
        if "backend_options" in engine_kwargs:
            formatting_str += (
                ", backend_options="
                f'{{"cutoff_dim": {engine_kwargs["backend_options"]["cutoff_dim"]}}}'
            )
        expected = prog_txt.format(engine_args=formatting_str).split("\n")

        for i, row in enumerate(code_list):
            assert row == expected[i]
def test_two_dimensional_cluster_denmark():
    """
    Two-dimensional temporal-mode cluster state as demonstrated in https://arxiv.org/pdf/1906.08709
    """
    np.random.seed(42)
    sq_r = 3
    delay1 = 1  # number of timebins in the short delay line
    delay2 = 12  # number of timebins in the long delay line
    n = 200  # number of timebins
    shots = 10
    # first half of cluster state measured in X, second half in P

    theta_A = [0] * int(n / 2) + [np.pi / 2] * int(
        n / 2)  # measurement angles for detector A
    theta_B = theta_A  # measurement angles for detector B

    # 2D cluster
    prog = tdmprogram.TDMProgram([1, delay2 + delay1 + 1])
    with prog.context(theta_A, theta_B, shift="default") as (p, q):
        ops.Sgate(sq_r, 0) | q[0]
        ops.Sgate(sq_r, 0) | q[delay2 + delay1 + 1]
        ops.Rgate(np.pi / 2) | q[delay2 + delay1 + 1]
        ops.BSgate(np.pi / 4, np.pi) | (q[delay2 + delay1 + 1], q[0])
        ops.BSgate(np.pi / 4, np.pi) | (q[delay2 + delay1], q[0])
        ops.BSgate(np.pi / 4, np.pi) | (q[delay1], q[0])
        ops.MeasureHomodyne(p[1]) | q[0]
        ops.MeasureHomodyne(p[0]) | q[delay1]
    eng = sf.Engine("gaussian")
    result = eng.run(prog, shots=shots)
    reshaped_samples = result.samples

    for sh in range(shots):
        X_A = reshaped_samples[sh][0][:n // 2]  # X samples from detector A
        P_A = reshaped_samples[sh][0][n // 2:]  # P samples from detector A
        X_B = reshaped_samples[sh][1][:n // 2]  # X samples from detector B
        P_B = reshaped_samples[sh][1][n // 2:]  # P samples from detector B

        # nullifiers defined in https://arxiv.org/pdf/1906.08709.pdf, Eqs. (1) and (2)
        N = delay2
        ntot = len(X_A) - delay2 - 1
        nX = np.array([
            X_A[k] + X_B[k] - X_A[k + 1] - X_B[k + 1] - X_A[k + N] +
            X_B[k + N] - X_A[k + N + 1] + X_B[k + N + 1] for k in range(ntot)
        ])
        nP = np.array([
            P_A[k] + P_B[k] + P_A[k + 1] + P_B[k + 1] - P_A[k + N] +
            P_B[k + N] + P_A[k + N + 1] - P_B[k + N + 1] for k in range(ntot)
        ])
        nXvar = np.var(nX)
        nPvar = np.var(nP)

        assert np.allclose(nXvar,
                           4 * sf.hbar * np.exp(-2 * sq_r),
                           rtol=5 / np.sqrt(ntot))
        assert np.allclose(nPvar,
                           4 * sf.hbar * np.exp(-2 * sq_r),
                           rtol=5 / np.sqrt(ntot))
예제 #5
0
def test_all_passive_gates(hbar, tol):
    """test that all gates run and do not cause anything to crash"""

    eng = sf.LocalEngine(backend="gaussian")
    circuit = sf.Program(4)

    with circuit.context as q:
        for i in range(4):
            ops.Sgate(1, 0.3) | q[i]
        ops.Rgate(np.pi) | q[0]
        ops.PassiveChannel(np.ones((2, 2))) | (q[1], q[2])
        ops.LossChannel(0.9) | q[1]
        ops.MZgate(0.25 * np.pi, 0) | (q[2], q[3])
        ops.PassiveChannel(np.array([[0.83]])) | q[0]
        ops.sMZgate(0.11, -2.1) | (q[0], q[3])
        ops.Interferometer(np.array([[np.exp(1j * 2)]])) | q[1]
        ops.BSgate(0.8, 0.4) | (q[1], q[3])
        ops.Interferometer(0.5**0.5 * np.fft.fft(np.eye(2))) | (q[0], q[2])
        ops.PassiveChannel(0.1 * np.ones((3, 3))) | (q[3], q[1], q[0])

    cov = eng.run(circuit).state.cov()

    circuit = sf.Program(4)
    with circuit.context as q:
        ops.Rgate(np.pi) | q[0]
        ops.PassiveChannel(np.ones((2, 2))) | (q[1], q[2])
        ops.LossChannel(0.9) | q[1]
        ops.MZgate(0.25 * np.pi, 0) | (q[2], q[3])
        ops.PassiveChannel(np.array([[0.83]])) | q[0]
        ops.sMZgate(0.11, -2.1) | (q[0], q[3])
        ops.Interferometer(np.array([[np.exp(1j * 2)]])) | q[1]
        ops.BSgate(0.8, 0.4) | (q[1], q[3])
        ops.Interferometer(0.5**0.5 * np.fft.fft(np.eye(2))) | (q[0], q[2])
        ops.PassiveChannel(0.1 * np.ones((3, 3))) | (q[3], q[1], q[0])

    compiled_circuit = circuit.compile(compiler="passive")
    T = compiled_circuit.circuit[0].op.p[0]

    S_sq = np.eye(8, dtype=np.complex128)
    r = 1
    phi = 0.3
    for i in range(4):
        S_sq[i, i] = np.cosh(r) - np.sinh(r) * np.cos(phi)
        S_sq[i, i + 4] = -np.sinh(r) * np.sin(phi)
        S_sq[i + 4, i] = -np.sinh(r) * np.sin(phi)
        S_sq[i + 4, i + 4] = np.cosh(r) + np.sinh(r) * np.cos(phi)

    cov_sq = (hbar / 2) * S_sq @ S_sq.T
    mu = np.zeros(8)

    P = interferometer(T)
    L = (hbar / 2) * (np.eye(P.shape[0]) - P @ P.T)
    cov2 = P @ cov_sq @ P.T + L

    assert np.allclose(cov, cov2, atol=tol, rtol=0)
def test_one_dimensional_cluster_tokyo():
    """
    One-dimensional temporal-mode cluster state as demonstrated in
    https://aip.scitation.org/doi/pdf/10.1063/1.4962732
    """
    np.random.seed(42)
    sq_r = 5

    n = 10  # for an n-mode cluster state
    shots = 3

    # first half of cluster state measured in X, second half in P
    theta1 = [0] * int(n / 2) + [np.pi / 2] * int(
        n / 2)  # measurement angles for detector A
    theta2 = theta1  # measurement angles for detector B

    prog = tdmprogram.TDMProgram(N=[1, 2])
    with prog.context(theta1, theta2, shift="default") as (p, q):
        ops.Sgate(sq_r, 0) | q[0]
        ops.Sgate(sq_r, 0) | q[2]
        ops.Rgate(np.pi / 2) | q[0]
        ops.BSgate(np.pi / 4) | (q[0], q[2])
        ops.BSgate(np.pi / 4) | (q[0], q[1])
        ops.MeasureHomodyne(p[0]) | q[0]
        ops.MeasureHomodyne(p[1]) | q[1]
    eng = sf.Engine("gaussian")

    result = eng.run(prog, shots=shots)
    reshaped_samples = result.samples

    for sh in range(shots):
        X_A = reshaped_samples[sh][0][:n // 2]  # X samples from detector A
        P_A = reshaped_samples[sh][0][n // 2:]  # P samples from detector A
        X_B = reshaped_samples[sh][1][:n // 2]  # X samples from detector B
        P_B = reshaped_samples[sh][1][n // 2:]  # P samples from detector B

        # nullifiers defined in https://aip.scitation.org/doi/pdf/10.1063/1.4962732, Eqs. (1a) and (1b)
        ntot = len(X_A) - 1
        nX = np.array(
            [X_A[i] + X_B[i] + X_A[i + 1] - X_B[i + 1] for i in range(ntot)])
        nP = np.array(
            [P_A[i] + P_B[i] - P_A[i + 1] + P_B[i + 1] for i in range(ntot)])

        nXvar = np.var(nX)
        nPvar = np.var(nP)

        assert np.allclose(nXvar,
                           2 * sf.hbar * np.exp(-2 * sq_r),
                           rtol=5 / np.sqrt(n))
        assert np.allclose(nPvar,
                           2 * sf.hbar * np.exp(-2 * sq_r),
                           rtol=5 / np.sqrt(n))
예제 #7
0
    def test_program_subroutine(self, setup_eng, tol):
        """Simple quantum program with a subroutine and references."""
        eng, prog = setup_eng(2)

        # define some gates
        D = ops.Dgate(0.5)
        BS = ops.BSgate(0.7 * np.pi, np.pi / 2)
        R = ops.Rgate(np.pi / 3)
        def subroutine(a, b):
            """Subroutine for the quantum program"""
            R | a
            BS | (a, b)
            R.H | a

        # main program
        with prog.context as q:
            # get register references
            alice, bob = q
            ops.All(ops.Vacuum()) | (alice, bob)
            D | alice
            subroutine(alice, bob)
            BS | (alice, bob)
            subroutine(bob, alice)

        state = eng.run(prog).state

        # state norm must be invariant
        if isinstance(eng.backend, BaseFock):
            assert np.allclose(state.trace(), 1, atol=tol, rtol=0)
예제 #8
0
def get_unitary(gate_args, device, phi_loop=None, delays=[1, 6, 36]):
    """Computes the unitary corresponding to a given set of gates

    Args:
        gate_args (_type_): dictionary with the collected arguments for
            squeezing gate, phase gates and beamsplitter gates
        device (sf.Device): the Borealis device
        phi_loop (list, optional): list containing the three loop offsets.
            Defaults to None.
        delays (list, optional): the delay applied by each loop in time bins.

    Returns:
        np.ndarray: a unitary matrix
    """
    args_list = to_args_list(gate_args, device)

    n, N = get_mode_indices(delays)

    prog = sf.TDMProgram(N)
    with prog.context(*args_list) as (p, q):
        for i in range(len(delays)):
            ops.Rgate(p[2 * i + 1]) | q[n[i]]
            ops.BSgate(p[2 * i + 2], np.pi / 2) | (q[n[i]], q[n[i + 1]])
            if phi_loop is not None:
                ops.Rgate(phi_loop[i]) | q[n[i]]
    prog.space_unroll()
    prog = prog.compile(compiler="passive")

    # unitary matrix
    assert prog.circuit
    U = prog.circuit[0].op.p[0]

    return U
    def setup_two_mode_circuit(self, setup_eng, cutoff):
        """Create the circuit for following tests"""
        eng_ref, q = setup_eng(2)

        S = ops.Sgate(2)
        B = ops.BSgate(2.234, -1.165)

        initial_state = np.complex64(
            np.random.rand(*[cutoff] * 4) + 1j * np.random.rand(*[cutoff] * 4))

        with eng_ref:
            ops.DensityMatrix(initial_state) | q
            S | q[0]
            B | q
            S | q[1]
            B | q

        eng, q = sf.Engine(2)

        with eng:
            S | q[0]
            B | q
            S | q[1]
            B | q

        rho = eng_ref.run().dm()
        return eng, rho, initial_state
예제 #10
0
    def test_unroll_shots(self):
        """Test unrolling program several times using different number of shots."""
        n = 2
        shots = 2

        prog = sf.TDMProgram(N=2)
        with prog.context([0] * n, [0] * n, [0] * n) as (p, q):
            ops.Sgate(0.5643, 0) | q[1]
            ops.BSgate(p[0]) | (q[1], q[0])
            ops.Rgate(p[1]) | q[1]
            ops.MeasureHomodyne(p[2]) | q[0]

        prog_length = len(prog.circuit)
        assert prog_length == 4

        prog.unroll(shots=shots)
        assert len(prog.circuit) == n * shots * prog_length

        # unroll once more with the same number of shots to cover caching
        prog.unroll(shots=shots)
        assert len(prog.circuit) == n * shots * prog_length

        # unroll once more with a different number of shots
        shots = 3
        prog.unroll(shots=shots)
        assert len(prog.circuit) == n * shots * prog_length

        prog.roll()
        assert len(prog.circuit) == prog_length
    def test_not_drawable(self, tmpdir):
        eng, q = sf.Engine(3)

        with eng:
            ops.BSgate(0, 2) | (q[0], q[2])

        with pytest.raises(NotDrawableException):
            eng.draw_circuit(print_queued_ops=True, tex_dir=tmpdir)
    def test_not_drawable(self, tmpdir):
        prog = sf.Program(3)

        with prog.context as q:
            ops.BSgate(0, 2) | (q[0], q[2])

        with pytest.raises(NotDrawableException):
            prog.draw_circuit(tex_dir=tmpdir)
    def test_S2gate_decomp_equal(self, setup_eng, r, tol):
        """Tests that the S2gate gives the same transformation as its decomposition."""
        eng, prog = setup_eng(2)

        r = 0.25
        phi = np.pi / 5

        with prog.context as q:
            ops.S2gate(r, phi) | q
            # run decomposition with reversed arguments
            ops.BSgate(np.pi / 4, 0) | q
            ops.Sgate(r, phi + np.pi) | q[0]
            ops.Sgate(r, phi) | q[1]
            ops.BSgate(-np.pi / 4, 0) | q

        eng.run(prog)
        assert np.all(eng.backend.is_vacuum(tol))
예제 #14
0
    def test_checkpoints(self, setup_eng, tol):
        """Test history checkpoints work when creating and deleting modes."""
        eng, q = setup_eng(2)
        alice, bob = q

        # define some gates
        D = ops.Dgate(0.5)
        BS = ops.BSgate(2 * np.pi, np.pi / 2)
        R = ops.Rgate(np.pi)

        with eng:
            D | alice
            BS | (alice, bob)
            ops.Del | alice
            R | bob
            charlie, = ops.New(1)
            BS | (bob, charlie)
            ops.MeasureX | bob
            ops.Del | bob
            D.H | charlie
            ops.MeasureX | charlie

        eng.optimize()
        state = eng.run()

        # state norm must be invariant
        if isinstance(eng.backend, BaseFock):
            assert np.allclose(state.trace(), 1, atol=tol, rtol=0)

        def check_reg(self, expected_n=None):
            """Compare Engine.register with the mode list returned by the backend.
            They should always be in agreement after Engine.run(), Engine.reset_queue()
            and Engine.reset().
            """
            rr = eng.register
            modes = eng.backend.get_modes()
            # number of elements
            assert len(rr) == len(modes)

            if expected_n is not None:
                assert len(rr) == expected_n

            # check indices match
            assert np.all([r.ind for r in rr] == modes)
            # activity
            assert np.all([r.active for r in rr])

        # check that reset() works
        check_reg(1)
        eng.reset()

        new_reg = eng.register
        # original number of modes
        assert len(new_reg) == len(q)

        # the regrefs are reset as well
        assert np.all([r.val is None for r in new_reg])
        check_reg(2)
예제 #15
0
    def test_neq_operator(self):
        """Not-equal operator check."""
        prog_1 = sf.Program(2)
        prog_2 = sf.Program(2)

        with prog_1.context as q:
            ops.Sgate(0.2) | q[0]
            ops.BSgate() | (q[0], q[1])
            ops.MeasureFock() | q[1]

        with prog_2.context as q:
            ops.Sgate(4.2) | q[0]
            ops.BSgate() | (q[0], q[1])
            ops.MeasureFock() | q[1]

        # should NOT be equal
        assert prog_1 != prog_2
        assert prog_2 != prog_1
예제 #16
0
    def test_delays_tdmprogram_with_nested_loops(self):
        """Test that error is raised when calculating the delays of a TDM program with nested loops"""

        gate_args = [random_bs(8), random_bs(8)]

        # a program with nested delays
        prog = TDMProgram(N=4)
        with prog.context(*gate_args) as (p, q):
            ops.Sgate(0.4, 0) | q[3]
            ops.BSgate(p[0]) | (q[0], q[3])
            ops.BSgate(p[1]) | (q[2], q[1])
            ops.MeasureX | q[0]

        with pytest.raises(
            NotImplementedError,
            match="Calculating delays for programs with nested loops is not implemented.",
        ):
            prog.get_delays()
예제 #17
0
    def test_generate_code_no_engine(self):
        """Test generating code for a regular program with no engine"""
        prog = sf.Program(3)

        with prog.context as q:
            ops.Sgate(0.54, 0) | q[0]
            ops.BSgate(0.45, np.pi / 2) | (q[0], q[2])
            ops.Sgate(3 * np.pi / 2, 0) | q[1]
            ops.BSgate(2 * np.pi, 0.62) | (q[0], q[1])
            ops.MeasureFock() | q[0]

        code = io.generate_code(prog)

        code_list = code.split("\n")
        expected = prog_txt_no_engine.split("\n")

        for i, row in enumerate(code_list):
            assert row == expected[i]
    def test_CXgate_decomp_equal(self, setup_eng, s, tol):
        """Tests that the CXgate gives the same transformation as its decomposition."""
        eng, prog = setup_eng(2)

        r = np.arcsinh(-s / 2)
        y = -1 / np.cosh(r)
        x = -np.tanh(r)
        theta = np.arctan2(y, x) / 2

        with prog.context as q:
            ops.CXgate(s) | q
            # run decomposition with reversed arguments
            ops.BSgate(-(np.pi / 2 + theta), 0) | q
            ops.Sgate(r, np.pi) | q[0]
            ops.Sgate(r, 0) | q[1]
            ops.BSgate(-theta, 0) | q

        eng.run(prog)
        assert np.all(eng.backend.is_vacuum(tol))
    def test_operation_before_squeezing(self):
        """Test error is raised when an operation is passed before the S2gates"""
        prog = sf.Program(2)
        with prog.context as q:
            ops.BSgate() | (q[0], q[1])
            ops.S2gate(SQ_AMPLITUDE) | (q[0], q[1])
            ops.MeasureFock() | q

        with pytest.raises(CircuitError, match="There can be no operations before the S2gates."):
            prog.compile("Xunitary")
예제 #20
0
    def test_print_commands(self, eng, prog):
        """Program.print and Engine.print_applied return correct strings."""
        prog = sf.Program(2)

        # store the result of the print command in list res
        res = []
        # use a print function that simply appends the operation
        # name to the results list
        print_fn = lambda x: res.append(x.__str__())

        # prog should now be empty
        prog.print(print_fn)
        assert res == []

        # define some gates
        D = ops.Dgate(0.5)
        BS = ops.BSgate(2 * np.pi, np.pi / 2)
        R = ops.Rgate(np.pi)

        with prog.context as q:
            alice, bob = q
            D | alice
            BS | (alice, bob)
            ops.Del | alice
            R | bob
            charlie, = ops.New(1)
            BS | (bob, charlie)
            ops.MeasureX | bob
            ops.Dgate(bob.par).H | charlie
            ops.Del | bob
            ops.MeasureX | charlie

        res = []
        prog.print(print_fn)

        expected = [
            "Dgate(0.5, 0) | (q[0])",
            "BSgate(6.283, 1.571) | (q[0], q[1])",
            "Del | (q[0])",
            "Rgate(3.142) | (q[1])",
            "New(1)",
            "BSgate(6.283, 1.571) | (q[1], q[2])",
            "MeasureX | (q[1])",
            "Dgate(q1, 0).H | (q[2])",
            "Del | (q[1])",
            "MeasureX | (q[2])",
        ]

        assert res == expected

        # NOTE optimization can change gate order
        result = eng.run(prog, compile_options={'optimize': False})
        res = []
        eng.print_applied(print_fn)
        assert res == ["Run 0:"] + expected
예제 #21
0
    def test_eq_symmetric_bsgate(self, compare_params):
        """Mode order doesn't matter in programs with symmetric beamsplitter."""
        prog_1 = sf.Program(2)
        prog_2 = sf.Program(2)

        with prog_1.context as q:
            ops.Fock(2) | q[0]
            ops.BSgate(np.pi / 4, np.pi / 2) | (q[0], q[1]
                                                )  # symmetric beamsplitter
            ops.MeasureFock() | q[1]

        with prog_2.context as q:
            ops.Fock(2) | q[0]
            ops.BSgate(np.pi / 4, np.pi / 2) | (q[1], q[0]
                                                )  # symmetric beamsplitter
            ops.MeasureFock() | q[1]

        # should be equivalent
        assert prog_1.equivalence(prog_2, compare_params=compare_params)
        assert prog_2.equivalence(prog_1, compare_params=compare_params)
예제 #22
0
    def test_two_mode_gate(self):
        """Test two mode gate converts"""
        sf_prog = Program(4)

        with sf_prog.context as q:
            ops.BSgate(0.54, -0.324) | (q[3], q[0])

        xir_prog = io.to_xir(sf_prog)

        expected = [("BSgate", [0.54, -0.324], (3, 0))]
        assert [(stmt.name, stmt.params, stmt.wires) for stmt in xir_prog.statements] == expected
예제 #23
0
    def test_equivalence_same_prog(self, prog, compare_params):
        """Same program equivalence."""
        assert prog.equivalence(prog)

        with prog.context as q:
            ops.Fock(2) | q[0]
            ops.BSgate() | (q[0], q[1])
            ops.MeasureFock() | q[1]

        # should be equivalent
        assert prog.equivalence(prog, compare_params=compare_params)
    def test_extract_arbitrary_unitary_two_modes_vectorized(
            self, setup_eng, cutoff, batch_size, tol):
        """Test that arbitrary unitary extraction works for 2 mode when vectorized"""
        bsize = 1
        if batch_size is not None:
            bsize = batch_size

        S = ops.Sgate(0.4, -1.2)
        B = ops.BSgate(2.234, -1.165)

        # not a state but it doesn't matter
        initial_state = np.complex64(
            np.random.rand(cutoff, cutoff) +
            1j * np.random.rand(cutoff, cutoff))

        eng_ref, p0 = setup_eng(2)
        with p0.context as q:
            ops.Ket(initial_state) | q

        prog = sf.Program(p0)
        with prog.context as q:
            S | q[0]
            B | q
            S | q[1]
            B | q

        U = utils.extract_unitary(
            prog,
            cutoff_dim=cutoff,
            vectorize_modes=True,
            backend=eng_ref.backend_name,
        )

        if isinstance(U, tf.Tensor):
            U = U.numpy()

        final_state = U @ initial_state.reshape([-1])
        expected_state = eng_ref.run([p0, prog]).state.ket()

        if isinstance(expected_state, tf.Tensor):
            expected_state = expected_state.numpy()

        if expected_state.shape[
                0] == bsize:  # the Fock backend does not support batching!
            for exp_state in expected_state:
                assert np.allclose(final_state,
                                   exp_state.reshape([-1]),
                                   atol=tol,
                                   rtol=0)
        else:
            assert np.allclose(final_state,
                               expected_state.reshape([-1]),
                               atol=tol,
                               rtol=0)
예제 #25
0
    def test_neq_operator_equivalent(self):
        """Not-equal operator check with equivalent circuit."""
        prog_1 = sf.Program(3)
        prog_2 = sf.Program(3)

        with prog_1.context as q:
            ops.Sgate(0.2) | q[0]
            ops.BSgate() | (q[0], q[1])
            ops.Sgate(0.2) | q[2]
            ops.MeasureFock() | q[1]

        with prog_2.context as q:
            ops.Sgate(0.2) | q[0]
            ops.Sgate(0.2) | q[2]  # moved up one step
            ops.BSgate() | (q[0], q[1])
            ops.MeasureFock() | q[1]

        # should NOT be equal
        assert prog_1 != prog_2
        assert prog_2 != prog_1
예제 #26
0
    def test_equivalence_different_circuits(self, compare_params):
        """Programs with different, but equivalent, circuits."""
        prog_1 = sf.Program(3)
        prog_2 = sf.Program(3)

        with prog_1.context as q:
            ops.Sgate(0.2) | q[0]
            ops.BSgate() | (q[0], q[1])
            ops.Sgate(0.2) | q[2]
            ops.MeasureFock() | q[1]

        with prog_2.context as q:
            ops.Sgate(0.2) | q[0]
            ops.Sgate(0.2) | q[2]  # moved up one step, but still equivalent
            ops.BSgate() | (q[0], q[1])
            ops.MeasureFock() | q[1]

        # should be equivalent
        assert prog_1.equivalence(prog_2, compare_params=compare_params)
        assert prog_2.equivalence(prog_1, compare_params=compare_params)
예제 #27
0
    def test_GBS_compile_nonconsec_measurefock(self):
        """Tests that GBS compilation fails when Fock measurements are made with an intervening gate."""
        prog = sf.Program(2)
        with prog.context as q:
            ops.Dgate(1.0) | q[0]
            ops.MeasureFock() | q[0]
            ops.Dgate(-1.0) | q[1]
            ops.BSgate(-0.5, 2.0) | q  # intervening gate
            ops.MeasureFock() | q[1]

        with pytest.raises(program.CircuitError, match="The Fock measurements are not consecutive."):
            prog.compile('gbs')
예제 #28
0
    def test_subsystems(self, setup_eng, tol):
        """Check that the backend keeps in sync with the program when creating and deleting modes."""
        null = sf.Program(2)  # empty program
        eng, prog = setup_eng(2)

        # define some gates
        D = ops.Dgate(0.5)
        BS = ops.BSgate(2 * np.pi, np.pi / 2)
        R = ops.Rgate(np.pi)

        with prog.context as q:
            alice, bob = q
            D | alice
            BS | (alice, bob)
            ops.Del | alice
            R | bob
            charlie, = ops.New(1)
            BS | (bob, charlie)
            ops.MeasureX | bob
            ops.Del | bob
            D.H | charlie
            ops.MeasureX | charlie

        def check_reg(p, expected_n=None):
            """Compare Program.register with the mode list returned by the backend.
            They should always be in agreement after Engine.run() and Engine.reset().
            """
            rr = p.register
            modes = eng.backend.get_modes()
            # number of elements
            assert len(rr) == len(modes)

            if expected_n is not None:
                assert len(rr) == expected_n

            # check indices match
            assert np.all([r.ind for r in rr] == modes)
            # activity
            assert np.all([r.active for r in rr])

        state = eng.run(null)
        check_reg(null, 2)
        state = eng.run(prog).state
        check_reg(prog, 1)

        # state norm must be invariant
        if isinstance(eng.backend, BaseFock):
            assert np.allclose(state.trace(), 1, atol=tol, rtol=0)

        # check that reset() works
        eng.reset()
        # the regrefs are reset as well
        assert np.all([r.val is None for r in prog.register])
예제 #29
0
    def test_checkpoints(self, backend):
        """Test history checkpoints work when creating and deleting modes."""
        eng, q = sf.Engine(2)
        alice, bob = q

        # define some gates
        D = ops.Dgate(0.5)
        BS = ops.BSgate(2 * np.pi, np.pi / 2)
        R = ops.Rgate(np.pi)

        with eng:
            D | alice
            BS | (alice, bob)
            ops.Del | alice
            R | bob
            charlie, = ops.New(1)
            BS | (bob, charlie)
            ops.MeasureX | bob
            ops.Del | bob
            D.H | charlie
            ops.MeasureX | charlie

        eng.optimize()
        eng.run(backend)

        assert not alice.active
        assert charlie.active

        # check that reset_queue() restores the latest RegRef checkpoint
        # (created by eng.run() above)
        eng.reset_queue()

        assert not alice.active
        assert charlie.active

        with eng:
            diana, = ops.New(1)
            ops.Del | charlie

        assert not charlie.active
        assert diana.active
        eng.reset_queue()
        assert charlie.active
        assert not diana.active

        eng.reset()

        new_reg = eng.register
        # original number of modes
        assert len(new_reg) == len(q)

        # the regrefs are reset as well
        assert np.all([r.val is None for r in new_reg])
예제 #30
0
    def test_print_commands(self, backend):
        """Test print_queue and print_applied returns correct strings."""
        eng, q = sf.Engine(2)

        # define some gates
        D = ops.Dgate(0.5)
        BS = ops.BSgate(2 * np.pi, np.pi / 2)
        R = ops.Rgate(np.pi)

        # get register references
        alice, bob = q

        with eng:
            D | alice
            BS | (alice, bob)
            ops.Del | alice
            R | bob
            charlie, = ops.New(1)
            BS | (bob, charlie)
            ops.MeasureX | bob
            ops.Dgate(bob).H | charlie
            ops.Del | bob
            ops.MeasureX | charlie

        res = []
        print_fn = lambda x: res.append(x.__str__())
        eng.print_queue(print_fn)

        expected = [
            "Dgate(0.5, 0) | (q[0])",
            "BSgate(6.283, 1.571) | (q[0], q[1])",
            "Del | (q[0])",
            "Rgate(3.142) | (q[1])",
            "New(1) ",
            "BSgate(6.283, 1.571) | (q[1], q[2])",
            "MeasureX | (q[1])",
            "Dgate(RR(q[1]), 0).H | (q[2])",
            "Del | (q[1])",
            "MeasureX | (q[2])",
        ]

        assert res == expected
        state = eng.run(backend)

        # queue should now be empty
        res = []
        eng.print_queue(print_fn)
        assert res == []

        # print_applied should now not be empty
        res = []
        eng.print_applied(print_fn)
        assert res == ["Run 0:"] + expected