def compute(self, records, start, end): r = records hits = strax.find_hits(r, min_amplitude=self.hit_thresholds) # Remove hits in zero-gain channels # they should not affect the clustering! hits = hits[self.to_pe[hits['channel']] != 0] hits = strax.sort_by_time(hits) # Use peaklet gap threshold for initial clustering # based on gaps between hits peaklets = strax.find_peaks( hits, self.to_pe, gap_threshold=self.config['peaklet_gap_threshold'], left_extension=self.config['peak_left_extension'], right_extension=self.config['peak_right_extension'], min_channels=self.config['peak_min_pmts'], result_dtype=self.dtype_for('peaklets'), max_duration=self.config['peaklet_max_duration'], ) # Make sure peaklets don't extend out of the chunk boundary # This should be very rare in normal data due to the ADC pretrigger # window. self.clip_peaklet_times(peaklets, start, end) # Get hits outside peaklets, and store them separately. # fully_contained is OK provided gap_threshold > extension, # which is asserted inside strax.find_peaks. is_lone_hit = strax.fully_contained_in(hits, peaklets) == -1 lone_hits = hits[is_lone_hit] strax.integrate_lone_hits( lone_hits, records, peaklets, save_outside_hits=(self.config['peak_left_extension'], self.config['peak_right_extension']), n_channels=len(self.to_pe)) # Compute basic peak properties -- needed before natural breaks hits = hits[~is_lone_hit] # Define regions outside of peaks such that _find_hit_integration_bounds # is not extended beyond a peak. outside_peaks = self.create_outside_peaks_region(peaklets, start, end) strax.find_hit_integration_bounds( hits, outside_peaks, records, save_outside_hits=(self.config['peak_left_extension'], self.config['peak_right_extension']), n_channels=len(self.to_pe), allow_bounds_beyond_records=True, ) # Transform hits to hitlets for naming conventions. A hit refers # to the central part above threshold a hitlet to the entire signal # including the left and right extension. # (We are not going to use the actual hitlet data_type here.) hitlets = hits del hits hitlet_time_shift = (hitlets['left'] - hitlets['left_integration']) * hitlets['dt'] hitlets['time'] = hitlets['time'] - hitlet_time_shift hitlets['length'] = (hitlets['right_integration'] - hitlets['left_integration']) hitlets = strax.sort_by_time(hitlets) rlinks = strax.record_links(records) strax.sum_waveform(peaklets, hitlets, r, rlinks, self.to_pe) strax.compute_widths(peaklets) # Split peaks using low-split natural breaks; # see https://github.com/XENONnT/straxen/pull/45 # and https://github.com/AxFoundation/strax/pull/225 peaklets = strax.split_peaks( peaklets, hitlets, r, rlinks, self.to_pe, algorithm='natural_breaks', threshold=self.natural_breaks_threshold, split_low=True, filter_wing_width=self.config['peak_split_filter_wing_width'], min_area=self.config['peak_split_min_area'], do_iterations=self.config['peak_split_iterations']) # Saturation correction using non-saturated channels # similar method used in pax # see https://github.com/XENON1T/pax/pull/712 # Cases when records is not writeable for unclear reason # only see this when loading 1T test data # more details on https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html if not r['data'].flags.writeable: r = r.copy() if self.config['saturation_correction_on']: peak_list = peak_saturation_correction( r, rlinks, peaklets, hitlets, self.to_pe, reference_length=self.config['saturation_reference_length'], min_reference_length=self. config['saturation_min_reference_length']) # Compute the width again for corrected peaks strax.compute_widths(peaklets, select_peaks_indices=peak_list) # Compute tight coincidence level. # Making this a separate plugin would # (a) doing hitfinding yet again (or storing hits) # (b) increase strax memory usage / max_messages, # possibly due to its currently primitive scheduling. hit_max_times = np.sort( hitlets['time'] + hitlets['dt'] * hit_max_sample(records, hitlets) + hitlet_time_shift # add time shift again to get correct maximum ) peaklet_max_times = ( peaklets['time'] + np.argmax(peaklets['data'], axis=1) * peaklets['dt']) tight_coincidence_channel = get_tight_coin( hit_max_times, hitlets['channel'], peaklet_max_times, self.config['tight_coincidence_window_left'], self.config['tight_coincidence_window_right'], self.channel_range) peaklets['tight_coincidence'] = tight_coincidence_channel if self.config['diagnose_sorting'] and len(r): assert np.diff(r['time']).min(initial=1) >= 0, "Records not sorted" assert np.diff( hitlets['time']).min(initial=1) >= 0, "Hits/Hitlets not sorted" assert np.all(peaklets['time'][1:] >= strax.endtime(peaklets)[:-1] ), "Peaks not disjoint" # Update nhits of peaklets: counts = strax.touching_windows(hitlets, peaklets) counts = np.diff(counts, axis=1).flatten() peaklets['n_hits'] = counts return dict(peaklets=peaklets, lone_hits=lone_hits)
def compute(self, records, start, end): r = records hits = strax.find_hits(r, min_amplitude=straxen.hit_min_amplitude( self.config['hit_min_amplitude'])) # Remove hits in zero-gain channels # they should not affect the clustering! hits = hits[self.to_pe[hits['channel']] != 0] hits = strax.sort_by_time(hits) # Use peaklet gap threshold for initial clustering # based on gaps between hits peaklets = strax.find_peaks( hits, self.to_pe, gap_threshold=self.config['peaklet_gap_threshold'], left_extension=self.config['peak_left_extension'], right_extension=self.config['peak_right_extension'], min_channels=self.config['peak_min_pmts'], result_dtype=self.dtype_for('peaklets')) # Make sure peaklets don't extend out of the chunk boundary # This should be very rare in normal data due to the ADC pretrigger # window. self.clip_peaklet_times(peaklets, start, end) # Get hits outside peaklets, and store them separately. # fully_contained is OK provided gap_threshold > extension, # which is asserted inside strax.find_peaks. lone_hits = hits[strax.fully_contained_in(hits, peaklets) == -1] strax.integrate_lone_hits( lone_hits, records, peaklets, save_outside_hits=(self.config['peak_left_extension'], self.config['peak_right_extension']), n_channels=len(self.to_pe)) # Compute basic peak properties -- needed before natural breaks strax.sum_waveform(peaklets, r, self.to_pe) strax.compute_widths(peaklets) # Split peaks using low-split natural breaks; # see https://github.com/XENONnT/straxen/pull/45 # and https://github.com/AxFoundation/strax/pull/225 peaklets = strax.split_peaks( peaklets, r, self.to_pe, algorithm='natural_breaks', threshold=self.natural_breaks_threshold, split_low=True, filter_wing_width=self.config['peak_split_filter_wing_width'], min_area=self.config['peak_split_min_area'], do_iterations=self.config['peak_split_iterations']) # Saturation correction using non-saturated channels # similar method used in pax # see https://github.com/XENON1T/pax/pull/712 if self.config['saturation_correction_on']: peak_saturation_correction( r, peaklets, self.to_pe, reference_length=self.config['saturation_reference_length'], min_reference_length=self. config['saturation_min_reference_length']) # Compute tight coincidence level. # Making this a separate plugin would # (a) doing hitfinding yet again (or storing hits) # (b) increase strax memory usage / max_messages, # possibly due to its currently primitive scheduling. hit_max_times = np.sort(hits['time'] + hits['dt'] * hit_max_sample(records, hits)) peaklet_max_times = ( peaklets['time'] + np.argmax(peaklets['data'], axis=1) * peaklets['dt']) peaklets['tight_coincidence'] = get_tight_coin( hit_max_times, peaklet_max_times, self.config['tight_coincidence_window_left'], self.config['tight_coincidence_window_right']) if self.config['diagnose_sorting'] and len(r): assert np.diff(r['time']).min(initial=1) >= 0, "Records not sorted" assert np.diff(hits['time']).min(initial=1) >= 0, "Hits not sorted" assert np.all(peaklets['time'][1:] >= strax.endtime(peaklets)[:-1] ), "Peaks not disjoint" # Update nhits of peaklets: counts = strax.touching_windows(hits, peaklets) counts = np.diff(counts, axis=1).flatten() counts += 1 peaklets['n_hits'] = counts return dict(peaklets=peaklets, lone_hits=lone_hits)