예제 #1
0
    def compute(self, records, start, end):
        r = records

        hits = strax.find_hits(r, min_amplitude=self.hit_thresholds)

        # Remove hits in zero-gain channels
        # they should not affect the clustering!
        hits = hits[self.to_pe[hits['channel']] != 0]

        hits = strax.sort_by_time(hits)

        # Use peaklet gap threshold for initial clustering
        # based on gaps between hits
        peaklets = strax.find_peaks(
            hits,
            self.to_pe,
            gap_threshold=self.config['peaklet_gap_threshold'],
            left_extension=self.config['peak_left_extension'],
            right_extension=self.config['peak_right_extension'],
            min_channels=self.config['peak_min_pmts'],
            result_dtype=self.dtype_for('peaklets'),
            max_duration=self.config['peaklet_max_duration'],
        )

        # Make sure peaklets don't extend out of the chunk boundary
        # This should be very rare in normal data due to the ADC pretrigger
        # window.
        self.clip_peaklet_times(peaklets, start, end)

        # Get hits outside peaklets, and store them separately.
        # fully_contained is OK provided gap_threshold > extension,
        # which is asserted inside strax.find_peaks.
        is_lone_hit = strax.fully_contained_in(hits, peaklets) == -1
        lone_hits = hits[is_lone_hit]
        strax.integrate_lone_hits(
            lone_hits,
            records,
            peaklets,
            save_outside_hits=(self.config['peak_left_extension'],
                               self.config['peak_right_extension']),
            n_channels=len(self.to_pe))

        # Compute basic peak properties -- needed before natural breaks
        hits = hits[~is_lone_hit]
        # Define regions outside of peaks such that _find_hit_integration_bounds
        # is not extended beyond a peak.
        outside_peaks = self.create_outside_peaks_region(peaklets, start, end)
        strax.find_hit_integration_bounds(
            hits,
            outside_peaks,
            records,
            save_outside_hits=(self.config['peak_left_extension'],
                               self.config['peak_right_extension']),
            n_channels=len(self.to_pe),
            allow_bounds_beyond_records=True,
        )

        # Transform hits to hitlets for naming conventions. A hit refers
        # to the central part above threshold a hitlet to the entire signal
        # including the left and right extension.
        # (We are not going to use the actual hitlet data_type here.)
        hitlets = hits
        del hits

        hitlet_time_shift = (hitlets['left'] -
                             hitlets['left_integration']) * hitlets['dt']
        hitlets['time'] = hitlets['time'] - hitlet_time_shift
        hitlets['length'] = (hitlets['right_integration'] -
                             hitlets['left_integration'])
        hitlets = strax.sort_by_time(hitlets)
        rlinks = strax.record_links(records)

        strax.sum_waveform(peaklets, hitlets, r, rlinks, self.to_pe)

        strax.compute_widths(peaklets)

        # Split peaks using low-split natural breaks;
        # see https://github.com/XENONnT/straxen/pull/45
        # and https://github.com/AxFoundation/strax/pull/225
        peaklets = strax.split_peaks(
            peaklets,
            hitlets,
            r,
            rlinks,
            self.to_pe,
            algorithm='natural_breaks',
            threshold=self.natural_breaks_threshold,
            split_low=True,
            filter_wing_width=self.config['peak_split_filter_wing_width'],
            min_area=self.config['peak_split_min_area'],
            do_iterations=self.config['peak_split_iterations'])

        # Saturation correction using non-saturated channels
        # similar method used in pax
        # see https://github.com/XENON1T/pax/pull/712
        # Cases when records is not writeable for unclear reason
        # only see this when loading 1T test data
        # more details on https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html
        if not r['data'].flags.writeable:
            r = r.copy()

        if self.config['saturation_correction_on']:
            peak_list = peak_saturation_correction(
                r,
                rlinks,
                peaklets,
                hitlets,
                self.to_pe,
                reference_length=self.config['saturation_reference_length'],
                min_reference_length=self.
                config['saturation_min_reference_length'])

            # Compute the width again for corrected peaks
            strax.compute_widths(peaklets, select_peaks_indices=peak_list)

        # Compute tight coincidence level.
        # Making this a separate plugin would
        # (a) doing hitfinding yet again (or storing hits)
        # (b) increase strax memory usage / max_messages,
        #     possibly due to its currently primitive scheduling.
        hit_max_times = np.sort(
            hitlets['time'] +
            hitlets['dt'] * hit_max_sample(records, hitlets) +
            hitlet_time_shift  # add time shift again to get correct maximum
        )
        peaklet_max_times = (
            peaklets['time'] +
            np.argmax(peaklets['data'], axis=1) * peaklets['dt'])
        tight_coincidence_channel = get_tight_coin(
            hit_max_times, hitlets['channel'], peaklet_max_times,
            self.config['tight_coincidence_window_left'],
            self.config['tight_coincidence_window_right'], self.channel_range)

        peaklets['tight_coincidence'] = tight_coincidence_channel

        if self.config['diagnose_sorting'] and len(r):
            assert np.diff(r['time']).min(initial=1) >= 0, "Records not sorted"
            assert np.diff(
                hitlets['time']).min(initial=1) >= 0, "Hits/Hitlets not sorted"
            assert np.all(peaklets['time'][1:] >= strax.endtime(peaklets)[:-1]
                          ), "Peaks not disjoint"

        # Update nhits of peaklets:
        counts = strax.touching_windows(hitlets, peaklets)
        counts = np.diff(counts, axis=1).flatten()
        peaklets['n_hits'] = counts

        return dict(peaklets=peaklets, lone_hits=lone_hits)
예제 #2
0
    def compute(self, records, start, end):
        r = records

        hits = strax.find_hits(r,
                               min_amplitude=straxen.hit_min_amplitude(
                                   self.config['hit_min_amplitude']))

        # Remove hits in zero-gain channels
        # they should not affect the clustering!
        hits = hits[self.to_pe[hits['channel']] != 0]

        hits = strax.sort_by_time(hits)

        # Use peaklet gap threshold for initial clustering
        # based on gaps between hits
        peaklets = strax.find_peaks(
            hits,
            self.to_pe,
            gap_threshold=self.config['peaklet_gap_threshold'],
            left_extension=self.config['peak_left_extension'],
            right_extension=self.config['peak_right_extension'],
            min_channels=self.config['peak_min_pmts'],
            result_dtype=self.dtype_for('peaklets'))

        # Make sure peaklets don't extend out of the chunk boundary
        # This should be very rare in normal data due to the ADC pretrigger
        # window.
        self.clip_peaklet_times(peaklets, start, end)

        # Get hits outside peaklets, and store them separately.
        # fully_contained is OK provided gap_threshold > extension,
        # which is asserted inside strax.find_peaks.
        lone_hits = hits[strax.fully_contained_in(hits, peaklets) == -1]
        strax.integrate_lone_hits(
            lone_hits,
            records,
            peaklets,
            save_outside_hits=(self.config['peak_left_extension'],
                               self.config['peak_right_extension']),
            n_channels=len(self.to_pe))

        # Compute basic peak properties -- needed before natural breaks
        strax.sum_waveform(peaklets, r, self.to_pe)
        strax.compute_widths(peaklets)

        # Split peaks using low-split natural breaks;
        # see https://github.com/XENONnT/straxen/pull/45
        # and https://github.com/AxFoundation/strax/pull/225
        peaklets = strax.split_peaks(
            peaklets,
            r,
            self.to_pe,
            algorithm='natural_breaks',
            threshold=self.natural_breaks_threshold,
            split_low=True,
            filter_wing_width=self.config['peak_split_filter_wing_width'],
            min_area=self.config['peak_split_min_area'],
            do_iterations=self.config['peak_split_iterations'])

        # Saturation correction using non-saturated channels
        # similar method used in pax
        # see https://github.com/XENON1T/pax/pull/712
        if self.config['saturation_correction_on']:
            peak_saturation_correction(
                r,
                peaklets,
                self.to_pe,
                reference_length=self.config['saturation_reference_length'],
                min_reference_length=self.
                config['saturation_min_reference_length'])

        # Compute tight coincidence level.
        # Making this a separate plugin would
        # (a) doing hitfinding yet again (or storing hits)
        # (b) increase strax memory usage / max_messages,
        #     possibly due to its currently primitive scheduling.
        hit_max_times = np.sort(hits['time'] +
                                hits['dt'] * hit_max_sample(records, hits))
        peaklet_max_times = (
            peaklets['time'] +
            np.argmax(peaklets['data'], axis=1) * peaklets['dt'])
        peaklets['tight_coincidence'] = get_tight_coin(
            hit_max_times, peaklet_max_times,
            self.config['tight_coincidence_window_left'],
            self.config['tight_coincidence_window_right'])

        if self.config['diagnose_sorting'] and len(r):
            assert np.diff(r['time']).min(initial=1) >= 0, "Records not sorted"
            assert np.diff(hits['time']).min(initial=1) >= 0, "Hits not sorted"
            assert np.all(peaklets['time'][1:] >= strax.endtime(peaklets)[:-1]
                          ), "Peaks not disjoint"

        # Update nhits of peaklets:
        counts = strax.touching_windows(hits, peaklets)
        counts = np.diff(counts, axis=1).flatten()
        counts += 1
        peaklets['n_hits'] = counts

        return dict(peaklets=peaklets, lone_hits=lone_hits)