def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok = True) if self.verbose: print("Loading Synthesis Network") with open_url("https://drive.google.com/uc?id=1JAPmhYIuzmNfjAdCnBDKOpK_BdpBkxyn", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url("https://drive.google.com/uc?id=1MZFFu14XWst-0Bz7n4odGb31oaqcX8V8", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000,512),dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)} torch.save(self.gaussian_fit,"gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok = True) if self.verbose: print("Loading Synthesis Network") with open_url("https://drive.google.com/uc?id=1AbwUv2vKceRvpSh6cCKLS_13xnjrqeMl", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url("https://drive.google.com/uc?id=1R1NlG14nyMoaYTH17mmITzDDLcDXSQ6p", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000,512),dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)} torch.save(self.gaussian_fit,"gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok = True) if self.verbose: print("Loading Synthesis Network") with open_url("https://drive.google.com/uc?id=1K0GAPKAM8BfcJ1WdKem32k9L5eMDxs9d", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url("https://drive.google.com/uc?id=1jw1V94Nc3dpJuPAvo9TfIgCVJ_Ljtr-v", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000,512),dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)} torch.save(self.gaussian_fit,"gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, synthesis_path=None, mapping_path=None, verbose=True): super(PULSE, self).__init__() self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self.synthesis = G_synthesis().to(self.device) self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") if synthesis_path is None: f = open_url( "https://drive.google.com/uc?id=1TCViX1YpQyRsklTVYEJwdbmK91vklCo8", cache_dir=cache_dir, verbose=verbose) else: f = open(synthesis_path, "rb") with f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt", map_location=self.device) else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().to(self.device) if mapping_path is None: f = open_url( "https://drive.google.com/uc?id=14R6iHGf5iuVx3DMNsACAl7eBr7Vdpd0k", cache_dir=cache_dir, verbose=verbose) else: f = open(mapping_path, "rb") with f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device=self.device) latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok = True) if self.verbose: print("Loading Synthesis Network") with open_url("https://drive.google.com/uc?id=1K7u64igPZmvl3BSxozVaHJVVdUuL5fxF", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url("https://drive.google.com/uc?id=1BHIHtKEhJNuim47MP8o4TImWOstPGLE7", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000,512),dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)} torch.save(self.gaussian_fit,"gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok = True) if self.verbose: print("Loading Synthesis Network") with open_url("https://drive.google.com/uc?id=1y-NhHkCvgdSi5_Qfnds6w0ifJsGNA7gM", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url("https://drive.google.com/uc?id=1pG9XPl7I33Z0iT9y__kP5Iy5B09UqztH", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000,512),dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)} torch.save(self.gaussian_fit,"gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok = True) if self.verbose: print("Loading Synthesis Network") with open_url("https://drive.google.com/file/d/19pglfAGL113rLzmHFjfu2Od-7jmWpuZf/view?usp=sharing", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url("https://drive.google.com/file/d/16YIeW-dr_XJWyHGEEL-yXx3Zif0WgCuB/view?usp=sharing", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000,512),dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)} torch.save(self.gaussian_fit,"gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok = True) if self.verbose: print("Loading Synthesis Network") with open_url("https://drive.google.com/uc?id=1OwPUTcx_NZLJz0TGt-fTDEmhcrInWhM_",cache_dir=cache_dir,verbose=verbose) as f: #with open_url("https://drive.google.com/uc?id=1TCViX1YpQyRsklTVYEJwdbmK91vklCo8", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url("https://drive.google.com/uc?id=14R6iHGf5iuVx3DMNsACAl7eBr7Vdpd0k", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000,512),dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)} torch.save(self.gaussian_fit,"gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok = True) if self.verbose: print("Loading Synthesis Network") with open_url("https://drive.google.com/uc?id=1ZbJffKU79LjMwsd3X-EIwecLvZvuYwAo", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url("https://drive.google.com/uc?id=1J_E4OUjG7Vn2rS3ezT0CHhuE1fEG9cma", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000,512),dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)} torch.save(self.gaussian_fit,"gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) print( "Plan to download https://drive.google.com/uc?id=1mAsooNngyIBinPr7nntOajWxP6z578a3" ) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1mAsooNngyIBinPr7nntOajWxP6z578a3", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) print("\Do \"Synthesis Network.pt\"") if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() print( "Plan to download https://drive.google.com/uc?id=1QDawHIcIRlifgFZN5_3H0OzeVmHn7tS" ) with open_url( "https://drive.google.com/uc?id=1QDawHIcIRlifgFZN5_3H0OzeVmHn7tSK", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) print("\Do \"gaussian_fit.pt\"") if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True, synthesis_model_path=SYNTHESIS_MODEL_PATH, mapping_model_path=MAPPING_MODEL_PATH): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url(synthesis_model_path, cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url(mapping_model_path, cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=13N1urNRhRLZbR9WG752LhQvGYO3x1QrW", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1laHsMRErPs7UTTzBwqlNsDlqgZ02TV6R", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1YUZZHNgphyOa1BfbxPBOPdfOOnS5CyV2", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1pnh91MlNhoSbvHuoivobIDMHq3zbbEmm", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network synthesis.pt") with open_url( "https://drive.google.com/uc?id=13ucp7AR4ucYrsMf-8etWxZk1MTGAcPIF", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() # mapping.pt with open_url( "https://drive.google.com/uc?id=1CGJf_11_SotYL9HeFEhzXrYV4nyVGGrc", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=16laSZI4MayJmruuOS-Mfx9hYKxuVGQo-", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1Q7yCjWXxROjbWQujQ4pXDXUdcUJd-KuR", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1LKlTS6EP1A50pEfIXIBehcUh98PSSy85", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=19iPG6TwGEGV0wlY5PGGJCIQAEI6WhcX8", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=12OWpiWLh6vnlmq2v9Cj3X0AdJIGfXHU_", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1QLubl3N_1hoboM44vaAo8z7w4Qgh2hr3", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1bsU0ajxyN9adHGwwf0uVFgjRvLss6b4t", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1_kXc5fbjWu0IBBXHachSxWCI_XLvbYhi", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=18ugCo-zhghcBb19AqwF-hKpXE0PSg9-5", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1VijILYWDj8RQ7n7dp81kcQbEIlt82juh", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=15fTHGsxvpkQgU7E9a6Da9-eLc6xMT2CZ", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1rxU-mLpNfZOvHjelHdcGeSbW2Nd9r7WF", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1vpPD7-2oW-hznGcwGy9zAhgdmb0NvmLf", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=193h4RpWqae7lkqbBfI8Oc4lm6_gHwsBI", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1bZfrPhsky3h3SeHjUHj71mqdspZfomPv", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1vscDi4yMuFUhAvL5sUjpWxGNbWQNQqxa", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1PG08CZbT0PSmyrCfvV8y3p1f3wwoCz61", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1k6O6isBC0OC5WcGWYWjZ2Ng2MkEGumgU", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1On4faywQ6XeIWV3QyaF1IOTdhGNFI0Tz", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1x94Ts5wAAFvBOW56EXbmggNOKLPuS0wb", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1xeZbIwYQqeEqAF__0A85709DPwKP9PZ5", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1wbgY2OH4uUFwUotRaV_s7md586dqEBt2", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1hY4qBMzhjuIbpqrg5LRU7Qi5VT9WCDNF", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1RRR5xYBmio4blj61E3AWAUVYz4cPPUBT", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=15VesUq_Z2-CGng62hlO7ZlcAOodEaEen", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1DBCVVfjfiTBeugOcRKKvy2NW_u5Z_JJS", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1r-sJ1y60A61G6pnxszgNPa0vLs7nTgMx", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1lrZIg8oD_y4KOv98TfFZIgJh0fG0rZxN", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1OjFOETBvDE3FOd1OmTP-ujSh3hCi7rgQ", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1eVGz3JTo7QuRUK7dqdlf5UkCcFJyGrUQ", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")
def __init__(self, cache_dir, verbose=True): super(PULSE, self).__init__() self.synthesis = G_synthesis().cuda() self.verbose = verbose cache_dir = Path(cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) if self.verbose: print("Loading Synthesis Network") with open_url( "https://drive.google.com/uc?id=1RNIjPDQ0VoUREGyTaQ70INu5USKuwCgV", cache_dir=cache_dir, verbose=verbose) as f: self.synthesis.load_state_dict(torch.load(f)) for param in self.synthesis.parameters(): param.requires_grad = False self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2) if Path("gaussian_fit.pt").exists(): self.gaussian_fit = torch.load("gaussian_fit.pt") else: if self.verbose: print("\tLoading Mapping Network") mapping = G_mapping().cuda() with open_url( "https://drive.google.com/uc?id=1hNysITDiQGR5QEWy2Ctb1BLokBrqiak_", cache_dir=cache_dir, verbose=verbose) as f: mapping.load_state_dict(torch.load(f)) if self.verbose: print("\tRunning Mapping Network") with torch.no_grad(): torch.manual_seed(0) latent = torch.randn((1000000, 512), dtype=torch.float32, device="cuda") latent_out = torch.nn.LeakyReLU(5)(mapping(latent)) self.gaussian_fit = { "mean": latent_out.mean(0), "std": latent_out.std(0) } torch.save(self.gaussian_fit, "gaussian_fit.pt") if self.verbose: print("\tSaved \"gaussian_fit.pt\"")