# coding=utf-8 from __future__ import absolute_import, print_function import os from suanpan.app import app from suanpan.docker.arguments import Folder, String from suanpan.storage import StorageProxy @app.param(String(key="storageType", default="oss")) @app.param( String(key="folder", default="man_face_25k", help="girl_face_50k man_face_25k")) @app.output(Folder(key="modelDir")) def SPModels(context): args = context.args storage = StorageProxy(None, None) storage.setBackend(type=args.storageType) storage.download(os.path.join("common/model/facelab", args.folder), args.modelDir) return args.modelDir if __name__ == "__main__": SPModels() # pylint: disable=no-value-for-parameter
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Int, Csv, String, Bool import statsmodels.api as sm import pandas as pd from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(Bool(key="timestampIndex", default=False)) @dc.column(String(key="timestampColumn", default="date")) @dc.column(String(key="labelColumn", default="y")) @dc.param( String( key="missing", default="none", help="Available options are ‘none’, ‘drop’, and ‘raise’.", )) @dc.param( String( key="trend", default="c", help= "Whether to include a constant or not. ‘c’ includes constant, ‘nc’ no constant.", )) @dc.param(String(key="method", default="cmle", help="‘cmle’, ‘mle’")) @dc.param( Int(key="maxiter", default=35,
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Int, String, Table, Bool, Float, ListOfString from arguments import SklearnModel from catboost import CatBoostRegressor @dc.input( Table( key="inputData", table="inputTable", partition="inputPartition", required=True ) ) @dc.column(ListOfString(key="featureColumns", default=[])) @dc.column(String(key="labelColumn", default="MEDV")) @dc.param( Int( key="iterations", default=1000, help="The maximum number of trees that can be built when solving machine learning problems.", ) ) @dc.param(Float(key="learningRate", default=0.03, help="The learning rate.")) @dc.param(Int(key="depth", default=6, help="Depth of the tree.")) @dc.param( Float( key="l2LeafReg", default=3.0, help="Coefficient at the L2 regularization term of the cost function.", )
from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Int, String, Bool, Float, ListOfString, Table import lightgbm as lgb from arguments import SklearnModel @dc.input( Table(key="inputData", table="inputTable", partition="inputPartition", required=True)) @dc.column(ListOfString(key="featureColumns", default=["f1", "f2", "f3", "f4"])) @dc.column(String(key="labelColumn", default="label")) @dc.param( Int(key="maxDepth", default=-1, help="Maximum tree depth for base learners")) @dc.param( String( key="boostingType", default="gbdt", help="Specify which booster to use: 'goss', 'rf' or 'dart'", )) @dc.param( Int(key="numLeaves", default=31, help="Maximum tree leaves for base learners.")) @dc.param(
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Csv, ListOfString, String, Int import statsmodels.api as sm from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(ListOfString(key="featureColumns", default=["a", "b", "c", "d"])) @dc.column(String(key="labelColumn", default="e")) @dc.param( String( key="missing", default="none", help="Available options are ‘none’, ‘drop’, and ‘raise’.", ) ) @dc.param( String( key="method", default="lbfgs", help="‘newton’, ‘bfgs’, ‘lbfgs’, ‘powell’, ‘cg’, ‘ncg’, ‘basinhopping’," " ‘minimize’", ) ) @dc.param( Int(key="maxiter", default=35, help="The maximum number of iterations to perform.") ) @dc.param(Int(key="disp", default=1, help="Set to True to print convergence messages."))
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Int, String, Csv, Bool, Float, ListOfString from catboost import CatBoostClassifier from arguments import SklearnModel @dc.input(Csv(key="inputData", required=True)) @dc.column(ListOfString(key="featureColumns", default=["a", "b", "c", "d"])) @dc.column(String(key="labelColumn", default="e")) @dc.param( Int( key="iterations", default=1000, help= "The maximum number of trees that can be built when solving machine learning problems.", )) @dc.param(Float(key="learningRate", default=0.03, help="The learning rate.")) @dc.param(Int(key="depth", default=6, help="Depth of the tree.")) @dc.param( Float( key="l2LeafReg", default=3.0, help="Coefficient at the L2 regularization term of the cost function.", )) @dc.param( Float( key="rsm", default=1,
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Csv, ListOfString, String import statsmodels.api as sm from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(ListOfString(key="featureColumns", default=["a", "b", "c", "d"])) @dc.column(String(key="labelColumn", default="e")) @dc.param( String( key="missing", default="none", help="Available options are ‘none’, ‘drop’, and ‘raise’.", )) @dc.param(String(key="method", default="pinv", help="Can be “pinv”, “qr”. ")) @dc.output(SklearnModel(key="outputModel")) def SPGLS(context): # 从 Context 中获取相关数据 args = context.args # 查看上一节点发送的 args.inputData 数据 df = args.inputData featureColumns = args.featureColumns labelColumn = args.labelColumn features = df[featureColumns].values label = df[labelColumn].values
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Folder, String from suanpan.storage import storage DATESET_PATH_PREFIX = "common/data" @dc.param( String( key="dataset", required=True, help= "allowed values: ['boston_housing', 'breast_cancer', 'california_housing', " "'covertype', 'diabetes', 'digits', 'iris', 'kddcup', 'linnerud', 'wine', 'titanic'" ", 'sun_spots', 'macrodata']", )) @dc.output(Folder(key="outputDir")) def SPClassicDatasets(context): args = context.args remotePath = storage.storagePathJoin(DATESET_PATH_PREFIX, args.dataset) storage.download(remotePath, args.outputDir) return args.outputDir if __name__ == "__main__": SPClassicDatasets() # pylint: disable=no-value-for-parameter
# coding=utf-8 from __future__ import absolute_import, print_function import os from suanpan.app import app from suanpan.docker.arguments import Folder, String from suanpan.storage import StorageProxy @app.param(String(key="storageType", default="oss")) @app.param( String(key="folder", default="man_1", help="girl_0 man_0 girl_1 man_1")) @app.output(Folder(key="outputData")) def SPMaterial(context): args = context.args storage = StorageProxy(None, None) storage.setBackend(type=args.storageType) storage.download( os.path.join("common/data/facelab_material", args.folder, "data.mp4"), os.path.join(args.outputData, "data.mp4"), ) return args.outputData if __name__ == "__main__": SPMaterial() # pylint: disable=no-value-for-parameter
import numpy as np from statsmodels.tsa.ar_model import ARResultsWrapper from statsmodels.tsa.statespace.sarimax import SARIMAXResultsWrapper from statsmodels.tsa.arima_model import ARMAResultsWrapper, ARIMAResultsWrapper from statsmodels.regression.linear_model import RegressionResultsWrapper from statsmodels.discrete.discrete_model import ( BinaryResultsWrapper, MultinomialResultsWrapper, ) from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.input(SklearnModel(key="inputModel")) @dc.column(ListOfString(key="featureColumns", default=["a", "b", "c", "d"])) @dc.column(String(key="predictColumn", default="prediction")) @dc.param(String(key="start", default="2000-11-30")) @dc.param(String(key="end", default="2001-05-31")) @dc.param(Bool(key="dynamic", default=True)) @dc.output(Csv(key="outputData")) def SPStatsPredict(context): args = context.args model = args.inputModel if isinstance( model, ( ARResultsWrapper, ARMAResultsWrapper, ARIMAResultsWrapper, SARIMAXResultsWrapper,
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Int, Csv, ListOfInt, String, Bool import statsmodels.api as sm import pandas as pd from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(Bool(key="timestampIndex", default=False)) @dc.column(String(key="timestampColumn", default="date")) @dc.column(String(key="labelColumn", default="y")) @dc.param( ListOfInt( key="order", default=[2, 0], help="The (p,q) order of the model for the number of AR parameters, differences, and MA parameters to use.", ) ) @dc.param( String( key="trend", default="c", help="Whether to include a constant or not. ‘c’ includes constant, ‘nc’ no constant.", ) ) @dc.param( String( key="method",
@dc.param( ListOfFloat( key="ma", default=[0.65, 0.35], help= "coefficient for moving-average lag polynomial, including zero lag", )) @dc.param( Int(key="nsample", default=250, help="length of simulated time series")) @dc.param(Float(key="sigma", default=1.0, help="standard deviation of noise")) @dc.param(Int(key="randomSeed", default=12345, help="random seed")) @dc.param(Bool(key="dateCol", default=True, help="date in dataset")) @dc.param( String( key="startDate", default="19800131", help="The first abbreviated date, for instance, '1965q1' or '1965m1'", )) @dc.param(String(key="freq", default="M", help="DateOffset")) @dc.output(Csv(key="outputData")) def SPARMASample(context): # 从 Context 中获取相关数据 args = context.args # 查看上一节点发送的 args.inputData 数据 np.random.seed(args.randomSeed) arparams = np.array(args.ar) maparams = np.array(args.ma) nobs = args.nsample sample = arma_generate_sample(arparams, maparams, nobs, sigma=args.sigma) if args.dateCol: dates = pd.date_range(start=args.startDate,
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Csv, ListOfString, String, Int import statsmodels.api as sm from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(ListOfString(key="featureColumns", default=["a", "b", "c", "d"])) @dc.column(String(key="labelColumn", default="e")) @dc.param( String( key="family", default="Gaussian", help= "The default is Gaussian. Binomial, Gamma, Gaussian, InverseGaussian" "NegativeBinomial, Poisson, Tweedie", )) @dc.param( String( key="missing", default="none", help="Available options are ‘none’, ‘drop’, and ‘raise’.", )) @dc.param(Int(key="maxiter", default=100, help="Default is 100.")) @dc.output(SklearnModel(key="outputModel")) def SPGLM(context): # 从 Context 中获取相关数据 args = context.args
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Csv, ListOfString, String, Int import statsmodels.api as sm import statsmodels from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(ListOfString(key="featureColumns", default=["a", "b", "c", "d"])) @dc.column(String(key="labelColumn", default="e")) @dc.param( String( key="M", default="HuberT", help= "The default is LeastSquares. HuberT, RamsayE, AndrewWave, TrimmedMean" "Hampel, TukeyBiweight", )) @dc.param( String( key="missing", default="none", help="Available options are ‘none’, ‘drop’, and ‘raise’.", )) @dc.param( Int(key="maxiter", default=50, help="The maximum number of iterations to try."))
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Int, Csv, ListOfInt, String, Bool import statsmodels.api as sm import pandas as pd from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(Bool(key="timestampIndex", default=False)) @dc.column(String(key="timestampColumn", default="date")) @dc.column(String(key="labelColumn", default="y")) @dc.param( ListOfInt( key="order", default=[1, 0, 0], help="The (p,d,q) order of the model for the number of AR parameters, " "differences, and MA parameters.", ) ) @dc.param( ListOfInt( key="seasonalOrder", default=[0, 0, 0, 0], help="The (P,D,Q,s) order of the seasonal component of the model for the" " AR parameters, differences, MA parameters, and periodicity.", ) ) @dc.param(