예제 #1
0
def main(argv):
    try:
        opts, args = getopt.getopt(argv, "ho:", ["output="])
    except getopt.GetoptError:
        print 'random_forest.py [-o [2008] [2012] [graphs]]'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'random_forest.py [-o [2008] [2012] [graphs]]'
            sys.exit()
        elif opt in ("-o", "--output"):
            if (arg == "2008"):
                # DEBUG
                print("rand_forest_model.predict(X_test_2008).shape" +
                      str(rand_forest_model.predict(X_test_2008).shape))
                make_submission_2008(
                    "submissions/random_forest_2008.csv",
                    rand_forest_modified_predict(rand_forest_model,
                                                 X_test_2008))
            elif (arg == "2012"):
                make_submission_2012(
                    "submissions/random_forest_2012.csv",
                    rand_forest_modified_predict(rand_forest_model,
                                                 X_test_2012))
            elif (arg == "graphs"):
                tune_and_graph()
예제 #2
0
def main(argv):
    try:
        opts, args = getopt.getopt(argv, "ho:", ["output="])
    except getopt.GetoptError:
        print 'xgb.py [-o [2008] [2012]]'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'xgb.py [-o [2008] [2012]]'
            sys.exit()
        elif opt in ("-o", "--output"):
            if (arg == "2008"):
                preds = round_predictions(xgb_model.predict(X_test_2008))
                # DEBUG
                print("preds.shape" + str(preds.shape))
                make_submission_2008("submissions/xgb_2008.csv", preds)
            elif (arg == "2012"):
                preds = round_predictions(xgb_model.predict(X_test_2012))
                make_submission_2012("submissions/xgb_2012.csv", preds)
예제 #3
0
def main(argv):
    try:
        opts, args = getopt.getopt(argv,"ho:",["output="])
    except getopt.GetoptError:
        print 'mlpclassifier.py [-o [2008] [2012] [tune]]'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'mlpclassifer.py [-o [2008] [2012] [tune]]'
            sys.exit()
        elif opt in ("-o", "--output"):
            if (arg == "2008"):
                # DEBUG
                print("mlp.predict(X_test_2008).shape" +
                      str(mlp.predict(X_test_2008).shape))
                make_submission_2008("submissions/mlp_2008.csv", 
                                      mlp_modified_predict(mlp, X_test_2008))
            elif (arg == "2012"):
                make_submission_2012("submissions/adaboost_2012.csv", 
                                      mlp_modified_predict(mlp, X_test_2012))
            elif (arg == "tune"):
                optimize_parameters()
예제 #4
0
def main(argv):
    try:
        opts, args = getopt.getopt(argv, "ho:", ["output="])
    except getopt.GetoptError:
        print 'linear_regression.py [-o [2008] [2012]]'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'linear_regression.py [-o [2008] [2012]]'
            sys.exit()
        elif opt in ("-o", "--output"):
            if (arg == "2008"):
                # DEBUG
                print("lin_reg_model.predict(X_test_2008).shape" +
                      str(lin_reg_model.predict(X_test_2008).shape))
                make_submission_2008(
                    "submissions/linear_regression_2008.csv",
                    lin_reg_modified_predict(lin_reg_model, X_test_2008))
            elif (arg == "2012"):
                make_submission_2012(
                    "submissions/linear_regression_2012.csv",
                    lin_reg_modified_predict(lin_reg_model, X_test_2012))
예제 #5
0
    mlp_2012 = mlp_weight * mlp_unrounded
    rand_forest_2012 = rand_forest_weight * rand_forest_unrounded

    lasso_unrounded = 0
    ridge_unrounded = 0
    mlp_unrounded = 0
    xgb_unrouned = 0
    rand_forest_unrounded = 0
    adaboost_ran_forest_unrounded = 0
    adaboost_unrounded = 0

    print "Starting Adding"
    temp1 = np.add(np.add(lasso_2012, ridge_2012), xgb_2012_weighted)
    print "Halway Through Adding"
    temp2 = np.add(
        np.add(np.add(adaboost_ran_forest_2012, adaboost_2012), mlp_2012),
        rand_forest_2012)
    ensemble = np.add(temp1, temp2)
    print "Done Adding!"

    temp1 = 0
    temp2 = 0

    print ensemble
    ensemble = round_predictions(ensemble)
    print "Min of ensemble: ", np.min(ensemble), ". Max: ", np.max(ensemble)
    return ensemble


make_submission_2008("submissions/ensemble_2008.csv", pred_2008())
make_submission_2012("submissions/ensemble_2012.csv", pred_2012())