def main(): toggle_no=int(sys.argv[1]) a_models=['ridge','forest','svm','fnn'] a=modelbank.seqandassay_to_yield_model([1,8,10],a_models[toggle_no],1) a.cross_validate_model() a.test_model() a.plot()
def main(): toggle_no=int(sys.argv[1]) ## The integer input from the command line prompt is stored in the toggle_no variable. The input ## has to be between [0,3]. Any other input would cause an error a_models=['ridge','forest','svm','fnn'] ## A string list is created called a_models with elements corresponding different regression models ## outlined in the model_architecture.py script a=modelbank.seqandassay_to_yield_model([1,8,10],a_models[toggle_no],1) ## Then a seqandassay_to_yield_model() object defined in the submodels_module.py script is created. ## It is instantiated with an integer list, a string and a float. The integer list corresponds to the ## assay scores that are going to be used to build the regression model. The string is the "toggle_no" ## element of the a_models list while the float corresponds to the sample fraction. a.cross_validate_model() a.test_model() a.plot()
def main(): ''' compare test performances when reducing training sample size. This version is for first paper, predicting yield from assays and one-hot encoded sequence. ''' a = int(sys.argv[1]) if a < 4: b = 0 elif a < 8: a = a - 4 b = 1 elif a < 12: a = a - 8 b = 2 elif a == 12: b = 3 a = a - 12 else: print('incorrect toggle number') arch_list = ['ridge', 'svm', 'forest', 'fnn'] # size_list=[0.055,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] size_list = [0.7, 0.8, 0.9, 1] for size in size_list: if b == 0: mdl = modelbank.seqandassay_to_yield_model([1, 8, 10], arch_list[a], size) elif b == 1: #1,5,9,12 mdl = modelbank.assay_to_yield_model([1, 8, 10], arch_list[a], size) elif b == 2: mdl = modelbank.seq_to_yield_model(arch_list[a], size) elif b == 3: mdl = modelbank.control_to_yield_model(arch_list[a], size) for seed in range(9): #no seed is seed=42 mdl.change_sample_seed(seed) mdl.cross_validate_model() mdl.limit_test_set([1, 8, 10]) mdl.test_model()
# if __name__ == '__main__': # main() loss_per_model, std_per_model = [], [] arch_list = ['ridge', 'svm', 'forest', 'fnn'] for i in range(4): cv_loss, test_loss, test_std = np.inf, np.inf, 0 for arch in arch_list: if i == 0: mdl = modelbank.assay_to_yield_model([1, 8, 10], arch, 1) elif i == 1: mdl = modelbank.weighted_assay_to_yield_model([1, 8, 10], arch, 1) elif i == 2: mdl = modelbank.seqandassay_to_yield_model([1, 8, 10], arch, 1) else: mdl = modelbank.seqandweightedassay_to_yield_model([1, 8, 10], arch, 1) if mdl.model_stats['cv_avg_loss'] < cv_loss: cv_loss = mdl.model_stats['cv_avg_loss'] test_loss = mdl.model_stats['test_avg_loss'] test_std = mdl.model_stats['test_std_loss'] loss_per_model.append(test_loss) std_per_model.append(test_std) seq_model = modelbank.seq_to_yield_model('forest', 1) seq_loss = seq_model.model_stats['test_avg_loss'] seq_std = seq_model.model_stats['test_std_loss'] x = [-0.3, 0.8] seq_plus = [seq_loss + seq_std] * 2
>>> d.fit([[1,2,3],[4,5,6],[7,8,9]], [1,2,3]) >>> get_node_depths(d.tree_) array([0, 1, 1, 2, 2]) """ def get_node_depths_(current_node, current_depth, l, r, depths): depths += [current_depth] if l[current_node] != -1 and r[current_node] != -1: get_node_depths_(l[current_node], current_depth + 1, l, r, depths) get_node_depths_(r[current_node], current_depth + 1, l, r, depths) depths = [] get_node_depths_(0, 0, tree.children_left, tree.children_right, depths) return np.array(depths) a = mb.seqandassay_to_yield_model([1, 8, 10], 'forest', 1) a.load_model(0) #sort1 = input 0 #sort8 = input 1 #sort10 = input 2 fig, ax = plt.subplots(1, 3, figsize=[6, 2], dpi=300, sharey=True) sorts = ["Prot K 37", "GFP SHuffle", r'$\beta$' + "-lactamase SHuffle"] for sort_no in [0, 1, 2]: blac_nodes_info = [] for j in range(a._model.model.n_estimators): a_tree = a._model.model.estimators_[j].tree_ node_depth = get_node_depths(a_tree) for i in range(a_tree.node_count):
def main(): ''' compare test performances when reducing training sample size. This version is for first paper, predicting yield from assays and one-hot encoded sequence. ''' ## A command line input is required when running this program. The integer input ## should be between 0-12. a=int(sys.argv[1]) if a<4: b=0 ## if the input is less than 4 then b value is set to 0 elif a<8: a=a-4 b=1 ## if a is between 4-8 then the b value is set to 1 and a is reduced by 4 elif a<12: a=a-8 b=2 ## if a is between 8-12 then the b value is set to 2 and a is reduced by 8 elif a==12: b=3 a=a-12 ## if a is equal to 12 then the b value is set to 3 and a is set to 0. else: print('incorrect toggle number') ## If the inout is out of bounds then an error message is printed. arch_list=['ridge','svm','forest','fnn'] ## A string list is created containing the names of the different regression models and stored as arch_list # size_list=[0.055,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] size_list=[0.7,0.8,0.9,1] ## A float list is created containing varying amounts of sample fractions and stored as size_list for size in size_list: ## each element in the size_list array, we check the value of the b value created in the above if-else ## statements and this dictates the kind of submodel_module.py object created ## if b = 0, then a seqandassay_to_yield_model object is created with an assay list of [1,8,10] ## a regression model dictated by the 'a' index of the arch_list and the size determined by the iteration of size_list if b==0: mdl=modelbank.seqandassay_to_yield_model([1,8,10],arch_list[a],size) ## if b = 1, then a assay_to_yield_model object is created with an assay list of [1,8,10] ## a regression model dictated by the 'a' index of the arch_list and the size determined by the iteration of size_list elif b==1: #1,5,9,12 mdl=modelbank.assay_to_yield_model([1,8,10],arch_list[a],size) ## if b = 2, then a seq_to_yield_model object is created with a regression model dictated by ## the 'a' index of the arch_list and the size determined by the iteration of size_list elif b==2: mdl=modelbank.seq_to_yield_model(arch_list[a],size) ## if b = 3, then a control_to_yield_model object is created with a regression model dictated by ## the 'a' index of the arch_list and the size determined by the iteration of size_list elif b==3: mdl=modelbank.control_to_yield_model(arch_list[a],size) for seed in range(9): #no seed is seed=42 ## For each element in the int range [0,9). The sample_seed class int to the element ## Then the trial data, model data and plots are updated to reflect the new sample_seed size mdl.change_sample_seed(seed) ## Then the best hyperparameters for the given model and seed size is determined using the cross_validate_model() ## function from the model object mdl.cross_validate_model() ## Following this limit_test_set() function defined in the x_to_yield_model parent class to update the ## testing_df class dataframe to reflect the 1,8,10 assays. mdl.limit_test_set([1,8,10]) ## Finally using the test_model() function from the model parent class is run to ## train the model using the hyperparameters defined above and the training data to predict the testing dataset. mdl.test_model()