예제 #1
0
            # plane wave
            return bind(
                tgt,
                get_sym_maxwell_plane_wave(amplitude_vec=np.array([1, 1, 1]),
                                           v=np.array([1, 0, 0]),
                                           omega=case.k))(queue)
        else:
            # point source
            return bind((test_source, tgt),
                        get_sym_maxwell_point_source(mfie.kernel, j_sym,
                                                     mfie.k))(queue,
                                                              j=src_j,
                                                              k=case.k)

    pde_test_inc = EHField(
        vector_from_device(queue, eval_inc_field_at(calc_patch_tgt)))

    source_maxwell_resids = [
        calc_patch.norm(x, np.inf) / calc_patch.norm(pde_test_inc.e, np.inf)
        for x in frequency_domain_maxwell(calc_patch, pde_test_inc.e,
                                          pde_test_inc.h, case.k)
    ]
    print("Source Maxwell residuals:", source_maxwell_resids)
    assert max(source_maxwell_resids) < 1e-6

    # }}}

    loc_sign = -1 if case.is_interior else +1

    from pytools.convergence import EOCRecorder
예제 #2
0
            places.update({
                "qbx_target_tol": qbx_tgt_tol,
                "plot_targets": fplot_tgt,
            })

        from pytential import GeometryCollection
        places = GeometryCollection(places)
        density_discr = places.get_discretization(places.auto_source.geometry)

        # {{{ system solve

        h_max = bind(places, sym.h_max(qbx.ambient_dim))(actx)

        pde_test_inc = EHField(
            vector_from_device(
                actx.queue, eval_inc_field_at(places, target="patch_target")))

        source_maxwell_resids = [
            calc_patch.norm(x, np.inf) /
            calc_patch.norm(pde_test_inc.e, np.inf)
            for x in frequency_domain_maxwell(calc_patch, pde_test_inc.e,
                                              pde_test_inc.h, case.k)
        ]
        print("Source Maxwell residuals:", source_maxwell_resids)
        assert max(source_maxwell_resids) < 1e-6

        inc_field_scat = EHField(eval_inc_field_at(places,
                                                   target="scat_discr"))
        inc_field_obs = EHField(eval_inc_field_at(places, target="obs_discr"))

        inc_xyz_sym = EHField(sym.make_sym_vector("inc_fld", 6))
예제 #3
0
def run_dielectric_test(cl_ctx, queue, nelements, qbx_order,
        op_class, mode,
        k0=3, k1=2.9, mesh_order=10,
        bdry_quad_order=None, bdry_ovsmp_quad_order=None,
        use_l2_weighting=False,
        fmm_order=None, visualize=False):

    if fmm_order is None:
        fmm_order = qbx_order * 2
    if bdry_quad_order is None:
        bdry_quad_order = mesh_order
    if bdry_ovsmp_quad_order is None:
        bdry_ovsmp_quad_order = 4*bdry_quad_order

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(
            partial(ellipse, 3),
            np.linspace(0, 1, nelements+1),
            mesh_order)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel, AxisTargetDerivative
    kernel = HelmholtzKernel(2)

    beta = 2.5
    K0 = np.sqrt(k0**2-beta**2)  # noqa
    K1 = np.sqrt(k1**2-beta**2)  # noqa

    pde_op = op_class(
            mode,
            k_vacuum=1,
            interfaces=((0, 1, sym.DEFAULT_SOURCE),),
            domain_k_exprs=(k0, k1),
            beta=beta,
            use_l2_weighting=use_l2_weighting)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            ).with_refinement()

    #print(sym.pretty(pde_op.operator(op_unknown_sym)))
    #1/0
    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    e_factor = float(pde_op.ez_enabled)
    h_factor = float(pde_op.hz_enabled)

    e_sources_0 = make_obj_array(list(np.array([
        [0.1, 0.2]
        ]).T.copy()))
    e_strengths_0 = np.array([1*e_factor])
    e_sources_1 = make_obj_array(list(np.array([
        [4, 4]
        ]).T.copy()))
    e_strengths_1 = np.array([1*e_factor])

    h_sources_0 = make_obj_array(list(np.array([
        [0.2, 0.1]
        ]).T.copy()))
    h_strengths_0 = np.array([1*h_factor])
    h_sources_1 = make_obj_array(list(np.array([
        [4, 5]
        ]).T.copy()))
    h_strengths_1 = np.array([1*h_factor])

    kernel_grad = [
        AxisTargetDerivative(i, kernel) for i in range(density_discr.ambient_dim)]

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)
    pot_p2p_grad = P2P(cl_ctx, kernel_grad, exclude_self=False)

    normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
    tangent = bind(
        density_discr,
        sym.pseudoscalar()/sym.area_element())(queue).as_vector(np.object)

    _, (E0,) = pot_p2p(queue, density_discr.nodes(), e_sources_0, [e_strengths_0],
                    out_host=False, k=K0)
    _, (E1,) = pot_p2p(queue, density_discr.nodes(), e_sources_1, [e_strengths_1],
                    out_host=False, k=K1)
    _, (grad0_E0, grad1_E0) = pot_p2p_grad(
        queue, density_discr.nodes(), e_sources_0, [e_strengths_0],
        out_host=False, k=K0)
    _, (grad0_E1, grad1_E1) = pot_p2p_grad(
        queue, density_discr.nodes(), e_sources_1, [e_strengths_1],
        out_host=False, k=K1)

    _, (H0,) = pot_p2p(queue, density_discr.nodes(), h_sources_0, [h_strengths_0],
                    out_host=False, k=K0)
    _, (H1,) = pot_p2p(queue, density_discr.nodes(), h_sources_1, [h_strengths_1],
                    out_host=False, k=K1)
    _, (grad0_H0, grad1_H0) = pot_p2p_grad(
        queue, density_discr.nodes(), h_sources_0, [h_strengths_0],
        out_host=False, k=K0)
    _, (grad0_H1, grad1_H1) = pot_p2p_grad(
        queue, density_discr.nodes(), h_sources_1, [h_strengths_1],
        out_host=False, k=K1)

    E0_dntarget = (grad0_E0*normal[0] + grad1_E0*normal[1])  # noqa
    E1_dntarget = (grad0_E1*normal[0] + grad1_E1*normal[1])  # noqa

    H0_dntarget = (grad0_H0*normal[0] + grad1_H0*normal[1])  # noqa
    H1_dntarget = (grad0_H1*normal[0] + grad1_H1*normal[1])  # noqa

    E0_dttarget = (grad0_E0*tangent[0] + grad1_E0*tangent[1])  # noqa
    E1_dttarget = (grad0_E1*tangent[0] + grad1_E1*tangent[1])  # noqa

    H0_dttarget = (grad0_H0*tangent[0] + grad1_H0*tangent[1])  # noqa
    H1_dttarget = (grad0_H1*tangent[0] + grad1_H1*tangent[1])  # noqa

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            if term.field_kind == pde_op.field_kind_e:

                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0
                        + term.coeff_inner * E1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0_dntarget
                        + term.coeff_inner * E1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0_dttarget
                        + term.coeff_inner * E1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            elif term.field_kind == pde_op.field_kind_h:
                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0
                        + term.coeff_inner * H1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0_dntarget
                        + term.coeff_inner * H1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0_dttarget
                        + term.coeff_inner * H1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            if use_l2_weighting:
                bvp_rhs[i_bc] *= sqrt_w

    scipy_op = bound_pde_op.scipy_op(queue, "unknown",
            domains=[sym.DEFAULT_TARGET]*len(pde_op.bcs), K0=K0, K1=K1,
            dtype=np.complex128)

    if mode == "tem" or op_class is SRep:
        from sumpy.tools import vector_from_device, vector_to_device
        from pytential.solve import lu
        unknown = lu(scipy_op, vector_from_device(queue, bvp_rhs))
        unknown = vector_to_device(queue, unknown)

    else:
        from pytential.solve import gmres
        gmres_result = gmres(scipy_op,
                bvp_rhs, tol=1e-14, progress=True,
                hard_failure=True, stall_iterations=0)

        unknown = gmres_result.solution

    # }}}

    targets_0 = make_obj_array(list(np.array([
        [3.2 + t, -4]
        for t in [0, 0.5, 1]
        ]).T.copy()))
    targets_1 = make_obj_array(list(np.array([
        [t*-0.3, t*-0.2]
        for t in [0, 0.5, 1]
        ]).T.copy()))

    from pytential.target import PointsTarget
    from sumpy.tools import vector_from_device
    F0_tgt = vector_from_device(queue, bind(  # noqa
            (qbx, PointsTarget(targets_0)),
            representation0_sym)(queue, unknown=unknown, K0=K0, K1=K1))
    F1_tgt = vector_from_device(queue, bind(  # noqa
            (qbx, PointsTarget(targets_1)),
            representation1_sym)(queue, unknown=unknown, K0=K0, K1=K1))

    _, (E0_tgt_true,) = pot_p2p(queue, targets_0, e_sources_0, [e_strengths_0],
                    out_host=True, k=K0)
    _, (E1_tgt_true,) = pot_p2p(queue, targets_1, e_sources_1, [e_strengths_1],
                    out_host=True, k=K1)

    _, (H0_tgt_true,) = pot_p2p(queue, targets_0, h_sources_0, [h_strengths_0],
                    out_host=True, k=K0)
    _, (H1_tgt_true,) = pot_p2p(queue, targets_1, h_sources_1, [h_strengths_1],
                    out_host=True, k=K1)

    err_F0_total = 0  # noqa
    err_F1_total = 0  # noqa

    i_field = 0

    def vec_norm(ary):
        return la.norm(ary.reshape(-1))

    def field_kind_to_string(field_kind):
        return {pde_op.field_kind_e: "E", pde_op.field_kind_h: "H"}[field_kind]

    for field_kind in pde_op.field_kinds:
        if not pde_op.is_field_present(field_kind):
            continue

        if field_kind == pde_op.field_kind_e:
            F0_tgt_true = E0_tgt_true  # noqa
            F1_tgt_true = E1_tgt_true  # noqa
        elif field_kind == pde_op.field_kind_h:
            F0_tgt_true = H0_tgt_true  # noqa
            F1_tgt_true = H1_tgt_true  # noqa
        else:
            assert False

        abs_err_F0 = vec_norm(F0_tgt[i_field] - F0_tgt_true)  # noqa
        abs_err_F1 = vec_norm(F1_tgt[i_field] - F1_tgt_true)  # noqa

        rel_err_F0 = abs_err_F0/vec_norm(F0_tgt_true)  # noqa
        rel_err_F1 = abs_err_F1/vec_norm(F1_tgt_true)  # noqa

        err_F0_total = max(rel_err_F0, err_F0_total)  # noqa
        err_F1_total = max(rel_err_F1, err_F1_total)  # noqa

        print("Abs Err %s0" % field_kind_to_string(field_kind), abs_err_F0)
        print("Abs Err %s1" % field_kind_to_string(field_kind), abs_err_F1)

        print("Rel Err %s0" % field_kind_to_string(field_kind), rel_err_F0)
        print("Rel Err %s1" % field_kind_to_string(field_kind), rel_err_F1)

        i_field += 1

    if visualize:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
        from pytential.target import PointsTarget
        fld0 = bind(
                (qbx, PointsTarget(fplot.points)),
                representation0_sym)(queue, unknown=unknown, K0=K0)
        fld1 = bind(
                (qbx, PointsTarget(fplot.points)),
                representation1_sym)(queue, unknown=unknown, K1=K1)

        comp_fields = []
        i_field = 0
        for field_kind in pde_op.field_kinds:
            if not pde_op.is_field_present(field_kind):
                continue

            fld_str = field_kind_to_string(field_kind)
            comp_fields.extend([
                ("%s_fld0" % fld_str, fld0[i_field].get()),
                ("%s_fld1" % fld_str, fld1[i_field].get()),
                ])

            i_field += 0

        low_order_qbx = QBXLayerPotentialSource(
                density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=2,
                fmm_order=3).with_refinement()
        from sumpy.kernel import LaplaceKernel
        from pytential.target import PointsTarget
        ones = (cl.array.empty(queue, (density_discr.nnodes,), dtype=np.float64)
                .fill(1))
        ind_func = - bind((low_order_qbx, PointsTarget(fplot.points)),
                sym.D(LaplaceKernel(2), sym.var("u")))(
                        queue, u=ones).get()

        _, (e_fld0_true,) = pot_p2p(
                queue, fplot.points, e_sources_0, [e_strengths_0],
                out_host=True, k=K0)
        _, (e_fld1_true,) = pot_p2p(
                queue, fplot.points, e_sources_1, [e_strengths_1],
                out_host=True, k=K1)
        _, (h_fld0_true,) = pot_p2p(
                queue, fplot.points, h_sources_0, [h_strengths_0],
                out_host=True, k=K0)
        _, (h_fld1_true,) = pot_p2p(
                queue, fplot.points, h_sources_1, [h_strengths_1],
                out_host=True, k=K1)

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file(
                "potential-n%d.vts" % nelements,
                [
                    ("e_fld0_true", e_fld0_true),
                    ("e_fld1_true", e_fld1_true),
                    ("h_fld0_true", h_fld0_true),
                    ("h_fld1_true", h_fld1_true),
                    ("ind", ind_func),
                    ] + comp_fields
                )

    return err_F0_total, err_F1_total
예제 #4
0
def run_dielectric_test(cl_ctx,
                        queue,
                        nelements,
                        qbx_order,
                        op_class,
                        mode,
                        k0=3,
                        k1=2.9,
                        mesh_order=10,
                        bdry_quad_order=None,
                        bdry_ovsmp_quad_order=None,
                        use_l2_weighting=False,
                        fmm_order=None,
                        visualize=False):

    if fmm_order is None:
        fmm_order = qbx_order * 2
    if bdry_quad_order is None:
        bdry_quad_order = mesh_order
    if bdry_ovsmp_quad_order is None:
        bdry_ovsmp_quad_order = 4 * bdry_quad_order

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(partial(ellipse, 3),
                           np.linspace(0, 1, nelements + 1), mesh_order)

    density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel, AxisTargetDerivative
    kernel = HelmholtzKernel(2)

    beta = 2.5
    K0 = np.sqrt(k0**2 - beta**2)  # noqa
    K1 = np.sqrt(k1**2 - beta**2)  # noqa

    pde_op = op_class(mode,
                      k_vacuum=1,
                      interfaces=((0, 1, sym.DEFAULT_SOURCE), ),
                      domain_k_exprs=(k0, k1),
                      beta=beta,
                      use_l2_weighting=use_l2_weighting)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order).with_refinement()

    #print(sym.pretty(pde_op.operator(op_unknown_sym)))
    #1/0
    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    e_factor = float(pde_op.ez_enabled)
    h_factor = float(pde_op.hz_enabled)

    e_sources_0 = make_obj_array(list(np.array([[0.1, 0.2]]).T.copy()))
    e_strengths_0 = np.array([1 * e_factor])
    e_sources_1 = make_obj_array(list(np.array([[4, 4]]).T.copy()))
    e_strengths_1 = np.array([1 * e_factor])

    h_sources_0 = make_obj_array(list(np.array([[0.2, 0.1]]).T.copy()))
    h_strengths_0 = np.array([1 * h_factor])
    h_sources_1 = make_obj_array(list(np.array([[4, 5]]).T.copy()))
    h_strengths_1 = np.array([1 * h_factor])

    kernel_grad = [
        AxisTargetDerivative(i, kernel)
        for i in range(density_discr.ambient_dim)
    ]

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)
    pot_p2p_grad = P2P(cl_ctx, kernel_grad, exclude_self=False)

    normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
    tangent = bind(density_discr,
                   sym.pseudoscalar() / sym.area_element())(queue).as_vector(
                       np.object)

    _, (E0, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        e_sources_0, [e_strengths_0],
                        out_host=False,
                        k=K0)
    _, (E1, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        e_sources_1, [e_strengths_1],
                        out_host=False,
                        k=K1)
    _, (grad0_E0, grad1_E0) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           e_sources_0, [e_strengths_0],
                                           out_host=False,
                                           k=K0)
    _, (grad0_E1, grad1_E1) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           e_sources_1, [e_strengths_1],
                                           out_host=False,
                                           k=K1)

    _, (H0, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        h_sources_0, [h_strengths_0],
                        out_host=False,
                        k=K0)
    _, (H1, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        h_sources_1, [h_strengths_1],
                        out_host=False,
                        k=K1)
    _, (grad0_H0, grad1_H0) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           h_sources_0, [h_strengths_0],
                                           out_host=False,
                                           k=K0)
    _, (grad0_H1, grad1_H1) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           h_sources_1, [h_strengths_1],
                                           out_host=False,
                                           k=K1)

    E0_dntarget = (grad0_E0 * normal[0] + grad1_E0 * normal[1])  # noqa
    E1_dntarget = (grad0_E1 * normal[0] + grad1_E1 * normal[1])  # noqa

    H0_dntarget = (grad0_H0 * normal[0] + grad1_H0 * normal[1])  # noqa
    H1_dntarget = (grad0_H1 * normal[0] + grad1_H1 * normal[1])  # noqa

    E0_dttarget = (grad0_E0 * tangent[0] + grad1_E0 * tangent[1])  # noqa
    E1_dttarget = (grad0_E1 * tangent[0] + grad1_E1 * tangent[1])  # noqa

    H0_dttarget = (grad0_H0 * tangent[0] + grad1_H0 * tangent[1])  # noqa
    H1_dttarget = (grad0_H1 * tangent[0] + grad1_H1 * tangent[1])  # noqa

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            if term.field_kind == pde_op.field_kind_e:

                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0 +
                                      term.coeff_inner * E1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0_dntarget +
                                      term.coeff_inner * E1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0_dttarget +
                                      term.coeff_inner * E1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            elif term.field_kind == pde_op.field_kind_h:
                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0 +
                                      term.coeff_inner * H1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0_dntarget +
                                      term.coeff_inner * H1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0_dttarget +
                                      term.coeff_inner * H1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            if use_l2_weighting:
                bvp_rhs[i_bc] *= sqrt_w

    scipy_op = bound_pde_op.scipy_op(queue,
                                     "unknown",
                                     domains=[sym.DEFAULT_TARGET] *
                                     len(pde_op.bcs),
                                     K0=K0,
                                     K1=K1,
                                     dtype=np.complex128)

    if mode == "tem" or op_class is SRep:
        from sumpy.tools import vector_from_device, vector_to_device
        from pytential.solve import lu
        unknown = lu(scipy_op, vector_from_device(queue, bvp_rhs))
        unknown = vector_to_device(queue, unknown)

    else:
        from pytential.solve import gmres
        gmres_result = gmres(scipy_op,
                             bvp_rhs,
                             tol=1e-14,
                             progress=True,
                             hard_failure=True,
                             stall_iterations=0)

        unknown = gmres_result.solution

    # }}}

    targets_0 = make_obj_array(
        list(np.array([[3.2 + t, -4] for t in [0, 0.5, 1]]).T.copy()))
    targets_1 = make_obj_array(
        list(np.array([[t * -0.3, t * -0.2] for t in [0, 0.5, 1]]).T.copy()))

    from pytential.target import PointsTarget
    from sumpy.tools import vector_from_device
    F0_tgt = vector_from_device(
        queue,
        bind(  # noqa
            (qbx, PointsTarget(targets_0)),
            representation0_sym)(queue, unknown=unknown, K0=K0, K1=K1))
    F1_tgt = vector_from_device(
        queue,
        bind(  # noqa
            (qbx, PointsTarget(targets_1)),
            representation1_sym)(queue, unknown=unknown, K0=K0, K1=K1))

    _, (E0_tgt_true, ) = pot_p2p(queue,
                                 targets_0,
                                 e_sources_0, [e_strengths_0],
                                 out_host=True,
                                 k=K0)
    _, (E1_tgt_true, ) = pot_p2p(queue,
                                 targets_1,
                                 e_sources_1, [e_strengths_1],
                                 out_host=True,
                                 k=K1)

    _, (H0_tgt_true, ) = pot_p2p(queue,
                                 targets_0,
                                 h_sources_0, [h_strengths_0],
                                 out_host=True,
                                 k=K0)
    _, (H1_tgt_true, ) = pot_p2p(queue,
                                 targets_1,
                                 h_sources_1, [h_strengths_1],
                                 out_host=True,
                                 k=K1)

    err_F0_total = 0  # noqa
    err_F1_total = 0  # noqa

    i_field = 0

    def vec_norm(ary):
        return la.norm(ary.reshape(-1))

    def field_kind_to_string(field_kind):
        return {pde_op.field_kind_e: "E", pde_op.field_kind_h: "H"}[field_kind]

    for field_kind in pde_op.field_kinds:
        if not pde_op.is_field_present(field_kind):
            continue

        if field_kind == pde_op.field_kind_e:
            F0_tgt_true = E0_tgt_true  # noqa
            F1_tgt_true = E1_tgt_true  # noqa
        elif field_kind == pde_op.field_kind_h:
            F0_tgt_true = H0_tgt_true  # noqa
            F1_tgt_true = H1_tgt_true  # noqa
        else:
            assert False

        abs_err_F0 = vec_norm(F0_tgt[i_field] - F0_tgt_true)  # noqa
        abs_err_F1 = vec_norm(F1_tgt[i_field] - F1_tgt_true)  # noqa

        rel_err_F0 = abs_err_F0 / vec_norm(F0_tgt_true)  # noqa
        rel_err_F1 = abs_err_F1 / vec_norm(F1_tgt_true)  # noqa

        err_F0_total = max(rel_err_F0, err_F0_total)  # noqa
        err_F1_total = max(rel_err_F1, err_F1_total)  # noqa

        print("Abs Err %s0" % field_kind_to_string(field_kind), abs_err_F0)
        print("Abs Err %s1" % field_kind_to_string(field_kind), abs_err_F1)

        print("Rel Err %s0" % field_kind_to_string(field_kind), rel_err_F0)
        print("Rel Err %s1" % field_kind_to_string(field_kind), rel_err_F1)

        i_field += 1

    if visualize:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
        from pytential.target import PointsTarget
        fld0 = bind((qbx, PointsTarget(fplot.points)),
                    representation0_sym)(queue, unknown=unknown, K0=K0)
        fld1 = bind((qbx, PointsTarget(fplot.points)),
                    representation1_sym)(queue, unknown=unknown, K1=K1)

        comp_fields = []
        i_field = 0
        for field_kind in pde_op.field_kinds:
            if not pde_op.is_field_present(field_kind):
                continue

            fld_str = field_kind_to_string(field_kind)
            comp_fields.extend([
                ("%s_fld0" % fld_str, fld0[i_field].get()),
                ("%s_fld1" % fld_str, fld1[i_field].get()),
            ])

            i_field += 0

        low_order_qbx = QBXLayerPotentialSource(
            density_discr,
            fine_order=bdry_ovsmp_quad_order,
            qbx_order=2,
            fmm_order=3).with_refinement()
        from sumpy.kernel import LaplaceKernel
        from pytential.target import PointsTarget
        ones = (cl.array.empty(queue, (density_discr.nnodes, ),
                               dtype=np.float64).fill(1))
        ind_func = -bind(
            (low_order_qbx, PointsTarget(fplot.points)),
            sym.D(LaplaceKernel(2), sym.var("u")))(queue, u=ones).get()

        _, (e_fld0_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     e_sources_0, [e_strengths_0],
                                     out_host=True,
                                     k=K0)
        _, (e_fld1_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     e_sources_1, [e_strengths_1],
                                     out_host=True,
                                     k=K1)
        _, (h_fld0_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     h_sources_0, [h_strengths_0],
                                     out_host=True,
                                     k=K0)
        _, (h_fld1_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     h_sources_1, [h_strengths_1],
                                     out_host=True,
                                     k=K1)

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file("potential-n%d.vts" % nelements, [
            ("e_fld0_true", e_fld0_true),
            ("e_fld1_true", e_fld1_true),
            ("h_fld0_true", h_fld0_true),
            ("h_fld1_true", h_fld1_true),
            ("ind", ind_func),
        ] + comp_fields)

    return err_F0_total, err_F1_total
예제 #5
0
def test_matrix_build(ctx_factory, k, curve_f, lpot_id, visualize=False):
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    target_order = 7
    qbx_order = 4
    nelements = 30
    mesh = make_curve_mesh(curve_f,
            np.linspace(0, 1, nelements + 1),
            target_order)

    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    pre_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    qbx, _ = QBXLayerPotentialSource(pre_density_discr, 4 * target_order,
            qbx_order,
            # Don't use FMM for now
            fmm_order=False).with_refinement()
    density_discr = qbx.density_discr

    op, u_sym, knl_kwargs = _build_op(lpot_id, k=k)
    bound_op = bind(qbx, op)

    from pytential.symbolic.execution import build_matrix
    mat = build_matrix(queue, qbx, op, u_sym).get()

    if visualize:
        from sumpy.tools import build_matrix as build_matrix_via_matvec
        mat2 = bound_op.scipy_op(queue, "u", dtype=mat.dtype, **knl_kwargs)
        mat2 = build_matrix_via_matvec(mat2)
        print(la.norm((mat - mat2).real, "fro") / la.norm(mat2.real, "fro"),
              la.norm((mat - mat2).imag, "fro") / la.norm(mat2.imag, "fro"))

        import matplotlib.pyplot as pt
        pt.subplot(121)
        pt.imshow(np.log10(np.abs(1.0e-20 + (mat - mat2).real)))
        pt.colorbar()
        pt.subplot(122)
        pt.imshow(np.log10(np.abs(1.0e-20 + (mat - mat2).imag)))
        pt.colorbar()
        pt.show()

    if visualize:
        import matplotlib.pyplot as pt
        pt.subplot(121)
        pt.imshow(mat.real)
        pt.colorbar()
        pt.subplot(122)
        pt.imshow(mat.imag)
        pt.colorbar()
        pt.show()

    from sumpy.tools import vector_to_device, vector_from_device
    np.random.seed(12)
    for i in range(5):
        if is_obj_array(u_sym):
            u = make_obj_array([
                np.random.randn(density_discr.nnodes)
                for _ in range(len(u_sym))
                ])
        else:
            u = np.random.randn(density_discr.nnodes)

        u_dev = vector_to_device(queue, u)
        res_matvec = np.hstack(
                list(vector_from_device(
                    queue, bound_op(queue, u=u_dev))))

        res_mat = mat.dot(np.hstack(list(u)))

        abs_err = la.norm(res_mat - res_matvec, np.inf)
        rel_err = abs_err / la.norm(res_matvec, np.inf)

        print("AbsErr {:.5e} RelErr {:.5e}".format(abs_err, rel_err))
        assert rel_err < 1e-13
예제 #6
0
def test_pec_mfie_extinction(ctx_getter, case, visualize=False):
    """For (say) is_interior=False (the 'exterior' MFIE), this test verifies
    extinction of the combined (incoming + scattered) field on the interior
    of the scatterer.
    """
    logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    np.random.seed(12)

    knl_kwargs = {"k": case.k}

    # {{{ come up with a solution to Maxwell's equations

    j_sym = sym.make_sym_vector("j", 3)
    jt_sym = sym.make_sym_vector("jt", 2)
    rho_sym = sym.var("rho")

    from pytential.symbolic.pde.maxwell import (
            PECChargeCurrentMFIEOperator,
            get_sym_maxwell_point_source,
            get_sym_maxwell_plane_wave)
    mfie = PECChargeCurrentMFIEOperator()

    test_source = case.get_source(queue)

    calc_patch = CalculusPatch(np.array([-3, 0, 0]), h=0.01)
    calc_patch_tgt = PointsTarget(cl.array.to_device(queue, calc_patch.points))

    rng = cl.clrandom.PhiloxGenerator(cl_ctx, seed=12)
    src_j = rng.normal(queue, (3, test_source.nnodes), dtype=np.float64)

    def eval_inc_field_at(tgt):
        if 0:
            # plane wave
            return bind(
                    tgt,
                    get_sym_maxwell_plane_wave(
                        amplitude_vec=np.array([1, 1, 1]),
                        v=np.array([1, 0, 0]),
                        omega=case.k)
                    )(queue)
        else:
            # point source
            return bind(
                    (test_source, tgt),
                    get_sym_maxwell_point_source(mfie.kernel, j_sym, mfie.k)
                    )(queue, j=src_j, k=case.k)

    pde_test_inc = EHField(
            vector_from_device(queue, eval_inc_field_at(calc_patch_tgt)))

    source_maxwell_resids = [
            calc_patch.norm(x, np.inf) / calc_patch.norm(pde_test_inc.e, np.inf)
            for x in frequency_domain_maxwell(
                calc_patch, pde_test_inc.e, pde_test_inc.h, case.k)]
    print("Source Maxwell residuals:", source_maxwell_resids)
    assert max(source_maxwell_resids) < 1e-6

    # }}}

    loc_sign = -1 if case.is_interior else +1

    from pytools.convergence import EOCRecorder

    eoc_rec_repr_maxwell = EOCRecorder()
    eoc_pec_bc = EOCRecorder()
    eoc_rec_e = EOCRecorder()
    eoc_rec_h = EOCRecorder()

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    from sumpy.expansion.level_to_order import SimpleExpansionOrderFinder

    for resolution in case.resolutions:
        scat_mesh = case.get_mesh(resolution, case.target_order)
        observation_mesh = case.get_observation_mesh(case.target_order)

        pre_scat_discr = Discretization(
                cl_ctx, scat_mesh,
                InterpolatoryQuadratureSimplexGroupFactory(case.target_order))
        qbx, _ = QBXLayerPotentialSource(
                pre_scat_discr, fine_order=4*case.target_order,
                qbx_order=case.qbx_order,
                fmm_level_to_order=SimpleExpansionOrderFinder(
                    case.fmm_tolerance),
                fmm_backend=case.fmm_backend
                ).with_refinement(_expansion_disturbance_tolerance=0.05)
        h_max = qbx.h_max

        scat_discr = qbx.density_discr
        obs_discr = Discretization(
                cl_ctx, observation_mesh,
                InterpolatoryQuadratureSimplexGroupFactory(case.target_order))

        inc_field_scat = EHField(eval_inc_field_at(scat_discr))
        inc_field_obs = EHField(eval_inc_field_at(obs_discr))

        # {{{ system solve

        inc_xyz_sym = EHField(sym.make_sym_vector("inc_fld", 6))

        bound_j_op = bind(qbx, mfie.j_operator(loc_sign, jt_sym))
        j_rhs = bind(qbx, mfie.j_rhs(inc_xyz_sym.h))(
                queue, inc_fld=inc_field_scat.field, **knl_kwargs)

        gmres_settings = dict(
                tol=case.gmres_tol,
                progress=True,
                hard_failure=True,
                stall_iterations=50, no_progress_factor=1.05)
        from pytential.solve import gmres
        gmres_result = gmres(
                bound_j_op.scipy_op(queue, "jt", np.complex128, **knl_kwargs),
                j_rhs, **gmres_settings)

        jt = gmres_result.solution

        bound_rho_op = bind(qbx, mfie.rho_operator(loc_sign, rho_sym))
        rho_rhs = bind(qbx, mfie.rho_rhs(jt_sym, inc_xyz_sym.e))(
                queue, jt=jt, inc_fld=inc_field_scat.field, **knl_kwargs)

        gmres_result = gmres(
                bound_rho_op.scipy_op(queue, "rho", np.complex128, **knl_kwargs),
                rho_rhs, **gmres_settings)

        rho = gmres_result.solution

        # }}}

        jxyz = bind(qbx, sym.tangential_to_xyz(jt_sym))(queue, jt=jt)

        # {{{ volume eval

        sym_repr = mfie.scattered_volume_field(jt_sym, rho_sym)

        def eval_repr_at(tgt, source=None):
            if source is None:
                source = qbx

            return bind((source, tgt), sym_repr)(queue, jt=jt, rho=rho, **knl_kwargs)

        pde_test_repr = EHField(
                vector_from_device(queue, eval_repr_at(calc_patch_tgt)))

        maxwell_residuals = [
                calc_patch.norm(x, np.inf) / calc_patch.norm(pde_test_repr.e, np.inf)
                for x in frequency_domain_maxwell(
                    calc_patch, pde_test_repr.e, pde_test_repr.h, case.k)]
        print("Maxwell residuals:", maxwell_residuals)

        eoc_rec_repr_maxwell.add_data_point(h_max, max(maxwell_residuals))

        # }}}

        # {{{ check PEC BC on total field

        bc_repr = EHField(mfie.scattered_volume_field(
            jt_sym, rho_sym, qbx_forced_limit=loc_sign))
        pec_bc_e = sym.n_cross(bc_repr.e + inc_xyz_sym.e)
        pec_bc_h = sym.normal(3).as_vector().dot(bc_repr.h + inc_xyz_sym.h)

        eh_bc_values = bind(qbx, sym.join_fields(pec_bc_e, pec_bc_h))(
                    queue, jt=jt, rho=rho, inc_fld=inc_field_scat.field,
                    **knl_kwargs)

        def scat_norm(f):
            return norm(qbx, queue, f, p=np.inf)

        e_bc_residual = scat_norm(eh_bc_values[:3]) / scat_norm(inc_field_scat.e)
        h_bc_residual = scat_norm(eh_bc_values[3]) / scat_norm(inc_field_scat.h)

        print("E/H PEC BC residuals:", h_max, e_bc_residual, h_bc_residual)

        eoc_pec_bc.add_data_point(h_max, max(e_bc_residual, h_bc_residual))

        # }}}

        # {{{ visualization

        if visualize:
            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(queue, scat_discr, case.target_order+3)

            bdry_normals = bind(scat_discr, sym.normal(3))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % resolution, [
                ("j", jxyz),
                ("rho", rho),
                ("Einc", inc_field_scat.e),
                ("Hinc", inc_field_scat.h),
                ("bdry_normals", bdry_normals),
                ("e_bc_residual", eh_bc_values[:3]),
                ("h_bc_residual", eh_bc_values[3]),
                ])

            fplot = make_field_plotter_from_bbox(
                    find_bounding_box(scat_discr.mesh), h=(0.05, 0.05, 0.3),
                    extend_factor=0.3)

            from pytential.qbx import QBXTargetAssociationFailedException

            qbx_tgt_tol = qbx.copy(target_association_tolerance=0.2)

            fplot_tgt = PointsTarget(cl.array.to_device(queue, fplot.points))
            try:
                fplot_repr = eval_repr_at(fplot_tgt, source=qbx_tgt_tol)
            except QBXTargetAssociationFailedException as e:
                fplot.write_vtk_file(
                        "failed-targets.vts",
                        [
                            ("failed_targets", e.failed_target_flags.get(queue))
                            ])
                raise

            fplot_repr = EHField(vector_from_device(queue, fplot_repr))

            fplot_inc = EHField(
                    vector_from_device(queue, eval_inc_field_at(fplot_tgt)))

            fplot.write_vtk_file(
                    "potential-%s.vts" % resolution,
                    [
                        ("E", fplot_repr.e),
                        ("H", fplot_repr.h),
                        ("Einc", fplot_inc.e),
                        ("Hinc", fplot_inc.h),
                        ]
                    )

        # }}}

        # {{{ error in E, H

        obs_repr = EHField(eval_repr_at(obs_discr))

        def obs_norm(f):
            return norm(obs_discr, queue, f, p=np.inf)

        rel_err_e = (obs_norm(inc_field_obs.e + obs_repr.e)
                / obs_norm(inc_field_obs.e))
        rel_err_h = (obs_norm(inc_field_obs.h + obs_repr.h)
                / obs_norm(inc_field_obs.h))

        # }}}

        print("ERR", h_max, rel_err_h, rel_err_e)

        eoc_rec_h.add_data_point(h_max, rel_err_h)
        eoc_rec_e.add_data_point(h_max, rel_err_e)

    print("--------------------------------------------------------")
    print("is_interior=%s" % case.is_interior)
    print("--------------------------------------------------------")

    good = True
    for which_eoc, eoc_rec, order_tol in [
            ("maxwell", eoc_rec_repr_maxwell, 1.5),
            ("PEC BC", eoc_pec_bc, 1.5),
            ("H", eoc_rec_h, 1.5),
            ("E", eoc_rec_e, 1.5)]:
        print(which_eoc)
        print(eoc_rec.pretty_print())

        if len(eoc_rec.history) > 1:
            if eoc_rec.order_estimate() < case.qbx_order - order_tol:
                good = False

    assert good