예제 #1
0
파일: map.py 프로젝트: astrofrog/sunpy
    def __sub__(self, other):
        """Subtract two maps. Currently does not take into account the
        alignment between the two maps.

        numpy dtype nums:
            1    int8
            2    uint8
            3    int16
            4    uint16
        """
        # if data is stored as unsigned, cast up (e.g. uint8 => int16)
        if self.dtype.kind == "u":
            self = self.astype(to_signed(self.dtype))
        if other.dtype.kind == "u":
            other = other.astype(to_signed(other.dtype))

        result = np.ndarray.__sub__(self, other)

        def norm():
            mean = result.mean()
            std = result.std()
            vmin = max(result.min(), mean - 6 * std)
            vmax = min(result.max(), mean + 6 * std)

            return colors.Normalize(vmin, vmax)

        result.norm = norm
        result.cmap = cm.gray  # @UndefinedVariable

        return result
예제 #2
0
파일: map.py 프로젝트: hbain/sunpy
    def __sub__(self, other):
        """Subtract two maps. Currently does not take into account the
        alignment between the two maps.

        numpy dtype nums:
            1    int8
            2    uint8
            3    int16
            4    uint16
        """
        # if data is stored as unsigned, cast up (e.g. uint8 => int16)
        if self.dtype.kind == "u":
            self = self.astype(to_signed(self.dtype))
        if other.dtype.kind == "u":
            other = other.astype(to_signed(other.dtype))

        result = np.ndarray.__sub__(self, other)

        def norm():
            mean = result.mean()
            std = result.std()
            vmin = max(result.min(), mean - 6 * std)
            vmax = min(result.max(), mean + 6 * std)

            return colors.Normalize(vmin, vmax)

        result.norm = norm
        result.cmap = cm.gray  # @UndefinedVariable

        return result
예제 #3
0
def test_to_signed():
    """
    This should return a signed type that can hold uint32 and ensure that
    an exception is raised when attempting to convert an unsigned 64 bit integer
    to an integer
    """
    assert util.to_signed(np.dtype('uint32')) == np.dtype('int64')

    with pytest.raises(ValueError):
        util.to_signed(np.dtype('uint64')) == np.dtype('int64')
예제 #4
0
def test_to_signed():
    """
    This should return a signed type that can hold uint32 and ensure that
    an exception is raised when attempting to convert an unsigned 64 bit integer
    to an integer
    """
    assert util.to_signed(np.dtype('uint32')) == np.dtype('int64')

    with pytest.raises(ValueError):
        util.to_signed(np.dtype('uint64')) == np.dtype('int64')
예제 #5
0
파일: spectrogram.py 프로젝트: Waino/sunpy
    def randomized_auto_const_bg(self, amount):
        """ Automatically determine background. Only consider a randomly
        chosen subset of the image.
        
        Parameters
        ----------
        amount : int
            Size of random sample that is considered for calculation of
            the background.
        """
        cols = [randint(0, self.shape[1] - 1) for _ in xrange(amount)]

        # pylint: disable=E1101,E1103
        data = self.astype(to_signed(self.dtype))
        # Subtract average value from every frequency channel.
        tmp = (data - np.average(self, 1).reshape(self.shape[0], 1))
        # Get standard deviation at every point of time.
        # Need to convert because otherwise this class's __getitem__
        # is used which assumes two-dimensionality.
        tmp = tmp[:, cols]
        sdevs = np.asarray(np.std(tmp, 0))

        # Get indices of values with lowest standard deviation.
        cand = sorted(xrange(amount), key=lambda y: sdevs[y])
        # Only consider the best 5 %.
        realcand = cand[:max(1, int(0.05 * len(cand)))]

        # Average the best 5 %
        bg = np.average(self[:, [cols[r] for r in realcand]], 1)

        return bg.reshape(self.shape[0], 1)
예제 #6
0
    def randomized_auto_const_bg(self, amount):
        """ Automatically determine background. Only consider a randomly
        chosen subset of the image.
        
        Parameters
        ----------
        amount : int
            Size of random sample that is considered for calculation of
            the background.
        """
        cols = [randint(0, self.shape[1] - 1) for _ in xrange(amount)]

        # pylint: disable=E1101,E1103
        data = self.astype(to_signed(self.dtype))
        # Subtract average value from every frequency channel.
        tmp = (data - np.average(self, 1).reshape(self.shape[0], 1))
        # Get standard deviation at every point of time.
        # Need to convert because otherwise this class's __getitem__
        # is used which assumes two-dimensionality.
        tmp = tmp[:, cols]
        sdevs = np.asarray(np.std(tmp, 0))

        # Get indices of values with lowest standard deviation.
        cand = sorted(xrange(amount), key=lambda y: sdevs[y])
        # Only consider the best 5 %.
        realcand = cand[:max(1, int(0.05 * len(cand)))]

        # Average the best 5 %
        bg = np.average(self[:, [cols[r] for r in realcand]], 1)

        return bg.reshape(self.shape[0], 1)
예제 #7
0
파일: spectrogram.py 프로젝트: Waino/sunpy
    def auto_find_background(self, amount=0.05):
        # pylint: disable=E1101,E1103
        data = self.astype(to_signed(self.dtype))
        # Subtract average value from every frequency channel.
        tmp = (data - np.average(self, 1).reshape(self.shape[0], 1))
        # Get standard deviation at every point of time.
        # Need to convert because otherwise this class's __getitem__
        # is used which assumes two-dimensionality.
        sdevs = np.asarray(np.std(tmp, 0))

        # Get indices of values with lowest standard deviation.
        cand = sorted(xrange(self.shape[1]), key=lambda y: sdevs[y])
        # Only consider the best 5 %.
        return cand[:max(1, int(amount * len(cand)))]
예제 #8
0
    def auto_find_background(self, amount=0.05):
        # pylint: disable=E1101,E1103
        data = self.astype(to_signed(self.dtype))
        # Subtract average value from every frequency channel.
        tmp = (data - np.average(self, 1).reshape(self.shape[0], 1))
        # Get standard deviation at every point of time.
        # Need to convert because otherwise this class's __getitem__
        # is used which assumes two-dimensionality.
        sdevs = np.asarray(np.std(tmp, 0))

        # Get indices of values with lowest standard deviation.
        cand = sorted(xrange(self.shape[1]), key=lambda y: sdevs[y])
        # Only consider the best 5 %.
        return cand[:max(1, int(amount * len(cand)))]
예제 #9
0
파일: spectrogram.py 프로젝트: jslhs/sunpy
    def auto_const_bg(self):
        """ Automatically determine background. """
        # pylint: disable=E1101,E1103
        data = self.astype(to_signed(self.dtype))
        # Subtract average value from every frequency channel.
        tmp = (data - np.average(self, 1).reshape(self.shape[0], 1))
        # Get standard deviation at every point of time.
        # Need to convert because otherwise this class's __getitem__
        # is used which assumes two-dimensionality.
        sdevs = np.asarray(np.std(tmp, 0))

        # Get indices of values with lowest standard deviation.
        cand = sorted(xrange(self.shape[0]), key=lambda y: sdevs[y])
        # Only consider the best 5 %.
        realcand = cand[:max(1, int(0.05 * len(cand)))]

        # Average the best 5 %
        bg = np.average(self[:, realcand], 1)
        return bg.reshape(self.shape[0], 1)
예제 #10
0
def test_to_signed():
    """
    This should return a signed type that can hold uint32.
    """
    assert util.to_signed(np.dtype('uint32')) == np.dtype('int64')
예제 #11
0
def test_to_signed():
    """
    This should return a signed type that can hold uint32.
    """
    assert util.to_signed(np.dtype('uint32')) == np.dtype('int64')