def build_embedding_graph(self):

		self.x = tf.placeholder(tf.float32, shape=[None, None, None, self.channels], name="X")
		self.y = tf.placeholder(tf.float32, shape=[None, None, None, self.channels], name="Y")

		# H-1 conv
		self.Wm1_conv = util.weight([self.cnn_size, self.cnn_size, self.channels, self.feature_num],
		                            stddev=self.weight_dev, name="W-1_conv", initializer=self.initializer)
		self.Bm1_conv = util.bias([self.feature_num], name="B-1")
		Hm1_conv = util.conv2d_with_bias(self.x, self.Wm1_conv, self.cnn_stride, self.Bm1_conv, add_relu=True, name="H-1")

		# H0 conv
		self.W0_conv = util.weight([self.cnn_size, self.cnn_size, self.feature_num, self.feature_num],
		                           stddev=self.weight_dev, name="W0_conv", initializer=self.initializer)
		self.B0_conv = util.bias([self.feature_num], name="B0")
		self.H_conv[0] = util.conv2d_with_bias(Hm1_conv, self.W0_conv, self.cnn_stride, self.B0_conv, add_relu=True,
		                                       name="H0")

		if self.summary:
			# convert to tf.summary.image format [batch_num, height, width, channels]
			Wm1_transposed = tf.transpose(self.Wm1_conv, [3, 0, 1, 2])
			tf.summary.image("W-1/" + self.model_name, Wm1_transposed, max_outputs=self.log_weight_image_num)
			util.add_summaries("B-1", self.model_name, self.Bm1_conv, mean=True, max=True, min=True)
			util.add_summaries("W-1", self.model_name, self.Wm1_conv, mean=True, max=True, min=True)

			util.add_summaries("B0", self.model_name, self.B0_conv, mean=True, max=True, min=True)
			util.add_summaries("W0", self.model_name, self.W0_conv, mean=True, max=True, min=True)
예제 #2
0
    def build_reconstruction_graph(self):

        # HD+1 conv
        self.WD1_conv = util.weight([self.cnn_size, self.cnn_size, self.feature_num, self.feature_num],
                                    stddev=self.weight_dev, name="WD1_conv", initializer=self.initializer)
        self.BD1_conv = util.bias([self.feature_num], name="BD1")

        # HD+2 conv
        self.WD2_conv = util.weight([self.cnn_size, self.cnn_size, self.feature_num+1, self.channels],
                                    stddev=self.weight_dev, name="WD2_conv", initializer=self.initializer)
        self.BD2_conv = util.bias([1], name="BD2")

        self.Y1_conv = (self.inference_depth) * [None]
        self.Y2_conv = (self.inference_depth) * [None]
        self.W = tf.Variable(np.full(fill_value=1.0 / self.inference_depth, shape=[self.inference_depth], 
                                        dtype=np.float32),name="LayerWeights") # 设置递归层随机变量权重
        W_sum = tf.reduce_sum(self.W) # 压缩求和 降维 计算所有递归层权重元素的和

        self.y_outputs = self.inference_depth * [None]

        for i in range(0, self.inference_depth):
            with tf.variable_scope("Y%d" % (i+1)):
                self.Y1_conv[i] = util.conv2d_with_bias(self.H_conv[i+1], self.WD1_conv, self.cnn_stride, self.BD1_conv,
                                                        add_relu=not self.residual, name="conv_1") # 每个Hd卷积结果输入HD+1中做卷积得到d个结果
                y_conv = tf.concat([self.Y1_conv[i], self.x], 3) # 将上面结果与输入X相加得到d个
                self.Y2_conv[i] = util.conv2d_with_bias(y_conv, self.WD2_conv, self.cnn_stride, self.BD2_conv,
                                                        add_relu=not self.residual, name="conv_2") # 相加结果再输入HD+2中卷积得到d个结果
                self.y_outputs[i] = self.Y2_conv[i] * self.W[i] / W_sum #  平均 每个递归层的输出

        if self.summary:
            util.add_summaries("BD1", self.model_name, self.BD1_conv)
            util.add_summaries("WD1", self.model_name, self.WD1_conv, mean=True, max=True, min=True)
            util.add_summaries("WD2", self.model_name, self.WD2_conv, mean=True, max=True, min=True)
예제 #3
0
    def build_embedding_graph(self):

        self.x = tf.placeholder(tf.float32, shape=[None, None, None, self.channels], name="X") #输入LR图像
        self.y = tf.placeholder(tf.float32, shape=[None, None, None, self.channels], name="Y") # HR图像

        # H-1 conv
        with tf.variable_scope("W-1_conv"):
            self.Wm1_conv = util.weight([self.cnn_size, self.cnn_size, self.channels, self.feature_num],
                                        stddev=self.weight_dev, name="conv_W", initializer=self.initializer)
            self.Bm1_conv = util.bias([self.feature_num], name="conv_B")
            Hm1_conv = util.conv2d_with_bias(self.x, self.Wm1_conv, self.cnn_stride, self.Bm1_conv, add_relu=True, name="H")

        # H0 conv
        with tf.variable_scope("W0_conv"):
            self.W0_conv = util.weight([self.cnn_size, self.cnn_size, self.feature_num, self.feature_num],
                                   stddev=self.weight_dev, name="conv_W", initializer=self.initializer)
            self.B0_conv = util.bias([self.feature_num], name="conv_B")
            self.H_conv[0] = util.conv2d_with_bias(Hm1_conv, self.W0_conv, self.cnn_stride, self.B0_conv, add_relu=True,name="H")

        if self.summary: 
            Wm1_transposed = tf.transpose(self.Wm1_conv, [3, 0, 1, 2])
            #把Wm2_conv格式 [3,3,1,96]转换为tf.summary.image格式 [96,3,3,1][batch_num, height, width, channels]
            tf.summary.image("W-1/" + self.model_name, Wm1_transposed, max_outputs=self.log_weight_image_num)
            # 为image增加一个summary,这样就能在tensorboard上看到图片了。img=tf.summary.image('input',x,batch_size)
            util.add_summaries("B-1", self.model_name, self.Bm1_conv, mean=True, max=True, min=True)
            util.add_summaries("W-1", self.model_name, self.Wm1_conv, mean=True, max=True, min=True)

            util.add_summaries("B0", self.model_name, self.B0_conv, mean=True, max=True, min=True)
            util.add_summaries("W0", self.model_name, self.W0_conv, mean=True, max=True, min=True)
예제 #4
0
    def build_inference_graph(self):

        if self.inference_depth <= 0:
            return

        self.W_conv = util.weight(
            [self.cnn_size, self.cnn_size, self.feature_num, self.feature_num],
            stddev=self.weight_dev,
            name="W_conv",
            initializer="diagonal")
        self.B_conv = util.bias([self.feature_num], name="B")

        for i in range(0, self.inference_depth):
            self.H_conv[i + 1] = util.conv2d_with_bias(self.H_conv[i],
                                                       self.W_conv,
                                                       1,
                                                       self.B_conv,
                                                       name="H%d" % (i + 1))

        if self.summary:
            util.add_summaries("W",
                               self.model_name,
                               self.W_conv,
                               mean=True,
                               max=True,
                               min=True)
            util.add_summaries("B",
                               self.model_name,
                               self.B_conv,
                               mean=True,
                               max=True,
                               min=True)
예제 #5
0
    def build_inference_graph(self):

        if self.inference_depth <= 0:
            return

        self.WL_conv = util.weight([self.cnn_size, self.cnn_size, self.feature_num, self.feature_num],
		                          stddev=self.weight_dev, name="WL_conv", initializer="diagonal")
        self.BL_conv = util.bias([self.feature_num], name="BL")

        self.WS_conv = util.weight([self.cnn_size, self.cnn_size, 1, self.feature_num],
		                          stddev=self.weight_dev, name="WS_conv", initializer="diagonal")
        self.BS_conv = util.bias([self.feature_num], name="BS")

        for i in range(0, self.inference_depth):
            self.H_conv[i + 1] = util.conv2d_with_bias(self.H_conv[i], self.WL_conv, 1, self.BL_conv, add_relu=True,
			                                           name="H%d" % (i + 1))
            self.HS_conv[i] = util.conv2d_with_bias(self.net_residual.outputs[:,i,:,:,:], self.WS_conv, 1, self.BS_conv, add_relu=True,
			                                           name="HS%d" % (i + 1))
            self.H_conv[i + 1] = tf.add(self.H_conv[i + 1], self.HS_conv[i])

            # tf.summary.image("Feature_map%d/" % (i+1) + self.model_name, self.R_conv, max_outputs=4)

        self.W_conv = util.weight([self.cnn_size, self.cnn_size, self.feature_num, self.channels],
		                          stddev=self.weight_dev, name="W_conv", initializer=self.initializer)
        self.B_conv = util.bias([self.channels], name="B")

        self.H = util.conv2d_with_bias(self.H_conv[self.inference_depth], self.W_conv, 1, self.B_conv, add_relu=True,
			                                           name="H")

        self.y_ = self.H

        tf.summary.image("prediction/" + self.model_name, self.y_, max_outputs=1)

        if self.residual:
            self.y_ = tf.add(self.y_, self.net_image.outputs, name="output")

        if self.summary:
            util.add_summaries("W", self.model_name, self.W_conv, mean=True, max=True, min=True)
            util.add_summaries("B", self.model_name, self.B_conv, mean=True, max=True, min=True)
            util.add_summaries("BD1", self.model_name, self.BD1_conv)
            util.add_summaries("WD1", self.model_name, self.WD1_conv, mean=True, max=True, min=True)
            util.add_summaries("WD2", self.model_name, self.WD2_conv, mean=True, max=True, min=True)
	def build_reconstruction_graph(self):

		# HD+1 conv
		self.WD1_conv = util.weight([self.cnn_size, self.cnn_size, self.feature_num, self.feature_num],
		                            stddev=self.weight_dev, name="WD1_conv", initializer=self.initializer)
		self.BD1_conv = util.bias([self.feature_num], name="BD1")

		# HD+2 conv
		self.WD2_conv = util.weight([self.cnn_size, self.cnn_size, self.feature_num, self.channels],
		                            stddev=self.weight_dev, name="WD2_conv", initializer=self.initializer)
		self.BD2_conv = util.bias([1], name="BD2")

		self.Y1_conv = (self.inference_depth + 1) * [None]
		self.Y2_conv = (self.inference_depth + 1) * [None]
		self.W = tf.Variable(
			np.full(fill_value=1.0 / (self.inference_depth + 1), shape=[self.inference_depth + 1], dtype=np.float32),
			name="layer_weight")
		W_sum = tf.reduce_sum(self.W)

		for i in range(0, self.inference_depth + 1):
			self.Y1_conv[i] = util.conv2d_with_bias(self.H_conv[i], self.WD1_conv, self.cnn_stride, self.BD1_conv,
			                                        add_relu=not self.residual, name="Y%d_1" % i)
			self.Y2_conv[i] = util.conv2d_with_bias(self.Y1_conv[i], self.WD2_conv, self.cnn_stride, self.BD2_conv,
			                                        add_relu=not self.residual, name="Y%d_2" % i)
			y_ = tf.multiply(self.W[i], self.Y2_conv[i], name="Y%d_mul" % i)
			y_ = tf.div(y_, W_sum, name="Y%d_div" % i)
			if i == 0:
				self.y_ = y_
			else:
				self.y_ = self.y_ + y_

		if self.residual:
			self.y_ = self.y_ + self.x

		if self.summary:
			util.add_summaries("BD1", self.model_name, self.BD1_conv)
			util.add_summaries("WD1", self.model_name, self.WD1_conv, mean=True, max=True, min=True)
			util.add_summaries("WD2", self.model_name, self.WD2_conv, mean=True, max=True, min=True)
    def build_new_layer(self):
        self.x = tf.placeholder(tf.float32,
                                shape=[None, None, None, self.channels],
                                name="X1")
        self.y = tf.placeholder(tf.float32,
                                shape=[None, None, None, self.channels],
                                name="Y1")

        # H-1 conv
        with tf.variable_scope("W-3_conv"):
            self.Wm1_conv = util.weight([
                self.cnn_size, self.cnn_size, self.channels, self.feature_num
            ],
                                        stddev=self.weight_dev,
                                        name="conv_W1",
                                        initializer=self.initializer)
            self.Bm1_conv = util.bias([self.feature_num], name="conv_B1")
            Hm1_conv = util.conv2d_with_bias(self.x,
                                             self.Wm1_conv,
                                             self.cnn_stride,
                                             self.Bm1_conv,
                                             add_relu=True,
                                             name="H1")

        # H0 conv
        with tf.variable_scope("W-2_conv"):
            self.W0_conv = util.weight([
                self.cnn_size, self.cnn_size, self.feature_num,
                self.feature_num
            ],
                                       stddev=self.weight_dev,
                                       name="conv_W1",
                                       initializer=self.initializer)
            self.B0_conv = util.bias([self.feature_num], name="conv_B1")
            self.H_conv[0] = util.conv2d_with_bias(Hm1_conv,
                                                   self.W0_conv,
                                                   self.cnn_stride,
                                                   self.B0_conv,
                                                   add_relu=True,
                                                   name="H1")

        if self.summary:
            # convert to tf.summary.image format [batch_num, height, width, channels]
            Wm1_transposed = tf.transpose(self.Wm1_conv, [3, 0, 1, 2])
            tf.summary.image("W-3/" + self.model_name,
                             Wm1_transposed,
                             max_outputs=self.log_weight_image_num)
            util.add_summaries("B-3",
                               self.model_name,
                               self.Bm1_conv,
                               mean=True,
                               max=True,
                               min=True)
            util.add_summaries("W-3",
                               self.model_name,
                               self.Wm1_conv,
                               mean=True,
                               max=True,
                               min=True)

            util.add_summaries("B2",
                               self.model_name,
                               self.B0_conv,
                               mean=True,
                               max=True,
                               min=True)
            util.add_summaries("W2",
                               self.model_name,
                               self.W0_conv,
                               mean=True,
                               max=True,
                               min=True)