예제 #1
0
    def _init_model(self, solver):

        if solver == 'numba':
            solver = PegasusNumba()
            num_app = ImplicitEulerNumba(root_finder=solver)
        elif solver == 'python':
            solver = PegasusPython()
            num_app = ImplicitEulerPython(root_finder=solver)

        fr = PowerReservoir(parameters = {'k' : 0.01,
                                         'alpha' : 2.5},
                           states = {'S0' : 0.0},
                           approximation=num_app,
                           id = 'FR')

        ur = UnsaturatedReservoir(parameters = {'Smax' : 50.0,
                                                'Ce' : 1.5,
                                                'm' : 0.01,
                                                'beta' : 1.5,
                                                },
                                  states = {'S0' : 0.2*50.0, 'PET' : None},
                                  approximation=num_app,
                                  id = 'UR')

        hru = Unit(layers = [
            [ur],
            [fr]
        ],
                  id = 'H1')

        hru.set_timestep(1.0)
        self._model = hru
예제 #2
0
    def _init_model(self, solver):

        if solver == 'numba':
            solver = PegasusNumba()
            num_app = ImplicitEulerNumba(root_finder=solver)
        elif solver == 'python':
            solver = PegasusPython()
            num_app = ImplicitEulerPython(root_finder=solver)

        fr = PowerReservoir(parameters={
            'k': 0.01,
            'alpha': 2.5
        },
                            states={'S0': 0.0},
                            approximation=num_app,
                            id='FR')

        fr.set_timestep(2.0)
        self._model = fr
예제 #3
0
    def _init_model(self, solver):

        if solver == 'numba':
            solver = PegasusNumba()
            num_app = ImplicitEulerNumba(root_finder=solver)
        elif solver == 'python':
            solver = PegasusPython()
            num_app = ImplicitEulerPython(root_finder=solver)

        ur = UnsaturatedReservoir(parameters={
            'Smax': 50.0,
            'Ce': 1.5,
            'm': 0.01,
            'beta': 1.5
        },
                                  states={'S0': 0.2 * 50.0},
                                  approximation=num_app,
                                  id='UR')

        ur.set_timestep(2.0)
        self._model = ur
예제 #4
0
from superflexpy.implementation.root_finders.pegasus import PegasusPython
from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
from superflexpy.implementation.elements.hbv import UnsaturatedReservoir, PowerReservoir
from superflexpy.framework.unit import Unit

root_finder = PegasusPython()
numeric_approximator = ImplicitEulerPython(root_finder=root_finder)

ur = UnsaturatedReservoir(parameters={
    'Smax': 50.0,
    'Ce': 1.0,
    'm': 0.01,
    'beta': 2.0
},
                          states={'S0': 25.0},
                          approximation=numeric_approximator,
                          id='UR')

fr = PowerReservoir(parameters={
    'k': 0.1,
    'alpha': 1.0
},
                    states={'S0': 10.0},
                    approximation=numeric_approximator,
                    id='FR')

model = Unit(layers=[[ur], [fr]], id='M4')

from superflexpy.implementation.models.m4_sf_2011 import model

model.set_input([P, E])
예제 #5
0
Dal Molin, M., Schirmer, M., Zappa, M., and Fenicia, F.: Understanding dominant
controls on streamflow spatial variability to set up a semi-distributed
hydrological model: the case study of the Thur catchment, Hydrol. Earth Syst.
Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, 2020.
"""

from superflexpy.implementation.root_finders.pegasus import PegasusPython
from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
from superflexpy.implementation.elements.thur_model_hess import SnowReservoir, UnsaturatedReservoir, PowerReservoir, HalfTriangularLag
from superflexpy.implementation.elements.structure_elements import Transparent, Junction, Splitter
from superflexpy.framework.unit import Unit
from superflexpy.framework.node import Node
from superflexpy.framework.network import Network

solver = PegasusPython()
approximator = ImplicitEulerPython(root_finder=solver)

# Fluxes in the order P, T, PET
upper_splitter = Splitter(
    direction=[
        [0, 1, None],  # P and T go to the snow reservoir
        [2, None, None]  # PET goes to the transparent element
    ],
    weight=[[1.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
    id='upper-splitter')

snow = SnowReservoir(parameters={
    't0': 0.0,
    'k': 0.01,
    'm': 2.0
예제 #6
0
    def _init_model(self, solver):

        if solver == 'numba':
            solver = PegasusNumba()
            num_app = ImplicitEulerNumba(root_finder=solver)
        elif solver == 'python':
            solver = PegasusPython()
            num_app = ImplicitEulerPython(root_finder=solver)

        # Define HRU 1 (40%)
        fr = PowerReservoir(parameters={
            'k': 0.01,
            'alpha': 2.5
        },
                            states={'S0': 0.0},
                            approximation=num_app,
                            id='FR')

        h1 = Unit(layers=[[fr]], id='H1')

        # Define HRU 2 (60%)
        fr = PowerReservoir(parameters={
            'k': 0.01,
            'alpha': 2.5
        },
                            states={'S0': 0.0},
                            approximation=num_app,
                            id='FR')

        sr = PowerReservoir(parameters={
            'k': 1e-4,
            'alpha': 1.0
        },
                            states={'S0': 0.0},
                            approximation=num_app,
                            id='SR')

        ur = UnsaturatedReservoir(parameters={
            'Smax': 50.0,
            'Ce': 1.5,
            'm': 0.01,
            'beta': 1.5,
        },
                                  states={
                                      'S0': 0.2 * 50.0,
                                      'PET': None
                                  },
                                  approximation=num_app,
                                  id='UR')

        s = Splitter(weight=[[0.3], [0.7]], direction=[[0], [0]], id='S')

        j = Junction(direction=[[0, 0]], id='J')

        h2 = Unit(layers=[[ur], [s], [fr, sr], [j]], id='H2')

        # Define the catchment
        cat = Node(units=[h1, h2], weights=[0.4, 0.6], area=1.0, id='Cat')

        cat.set_timestep(1.0)
        self._model = cat
예제 #7
0
CODED BY: Marco Dal Molin
DESIGNED BY: Marco Dal Molin, Fabrizio Fenicia, Dmitri Kavetski

This file implements a version of the model GR4J
"""

from superflexpy.implementation.root_finders.pegasus import PegasusPython
from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
from superflexpy.implementation.elements.gr4j import InterceptionFilter, ProductionStore, UnitHydrograph1, UnitHydrograph2, RoutingStore, FluxAggregator
from superflexpy.implementation.elements.structure_elements import Transparent, Splitter, Junction
from superflexpy.framework.unit import Unit

x1, x2, x3, x4 = (50.0, 0.1, 20.0, 3.5)

root_finder = PegasusPython()  # Use the default parameters
numerical_approximation = ImplicitEulerPython(root_finder)

interception_filter = InterceptionFilter(id='ir')

production_store = ProductionStore(parameters={'x1': x1, 'alpha': 2.0,
                                               'beta': 5.0, 'ni': 4/9},
                                   states={'S0': 10.0},
                                   approximation=numerical_approximation,
                                   id='ps')

splitter = Splitter(weight=[[0.9], [0.1]],
                    direction=[[0], [0]],
                    id='spl')

unit_hydrograph_1 = UnitHydrograph1(parameters={'lag-time': x4},