def train_model(self, params, X, y): early_stop = EarlyStopping({"metric": {"name": "logloss"}}) time_constraint = TimeConstraint({"train_seconds_time_limit": self._time_limit}) il = IterativeLearner(params, callbacks=[early_stop, time_constraint]) il_key = il.get_params_key() if il_key in self._models_params_keys: return None self._models_params_keys += [il_key] if self.should_train_next(il.get_name()): il.train({"train": {"X": X, "y": y}}) return il return None
def train_model(self, params, X, y): metric_logger = MetricLogger({"metric_names": ["logloss", "auc"]}) early_stop = EarlyStopping({"metric": {"name": self._optimize_metric}}) time_constraint = TimeConstraint({"train_seconds_time_limit": self._time_limit}) il = IterativeLearner( params, callbacks=[early_stop, time_constraint, metric_logger] ) il_key = il.get_params_key() if il_key in self._models_params_keys: self._progress_bar.update(1) return None self._models_params_keys += [il_key] if self.should_train_next(il.get_name()): il.train({"train": {"X": X, "y": y}}) self._progress_bar.update(1) return il self._progress_bar.update(1) return None