def _run_holts_trend_corrected_exponential_smoothing( self, individual: tuple): f = Forecast(self.__orders, self.__average_order) holts_trend_corrected_smoothing = [] demand = [{ 't': index, 'demand': order } for index, order in enumerate(self.__orders, 1)] stats = LinearRegression(demand) log_stats = stats.least_squared_error(slice_end=6) for sm_lvl in individual: p = [ i for i in f.holts_trend_corrected_exponential_smoothing( alpha=sm_lvl[0], gamma=sm_lvl[1], intercept=log_stats.get('intercept'), slope=log_stats.get('slope')) ] # print(p) holts_trend_corrected_smoothing.append(p) appraised_individual = {} for smoothing_level in individual: sum_squared_error = f.sum_squared_errors_indi_htces( squared_error=holts_trend_corrected_smoothing, alpha=smoothing_level[0], gamma=smoothing_level[1]) standard_error = f.standard_error(sum_squared_error, len(self.__orders), smoothing_level) appraised_individual.update({smoothing_level: standard_error}) # print('The standard error as a trait has been calculated {}'.format(appraised_individual)) return appraised_individual
def _ses_forecast(smoothing_level_constant: float, forecast_demand: Forecast, forecast_length: int, orders_length: int) -> dict: """ Private function for executing the simple exponential smoothing forecast. """ forecast_breakdown = [ i for i in forecast_demand.simple_exponential_smoothing( smoothing_level_constant) ] ape = LinearRegression(forecast_breakdown) mape = forecast_demand.mean_aboslute_percentage_error_opt( forecast_breakdown) stats = ape.least_squared_error() simple_forecast = forecast_demand.simple_exponential_smoothing_forecast( forecast=forecast_breakdown, forecast_length=forecast_length) sum_squared_error = forecast_demand.sum_squared_errors( simple_forecast, smoothing_level_constant) standard_error = forecast_demand.standard_error(sum_squared_error, orders_length, smoothing_level_constant) regression_line = _regr_ln(stats=stats) log.log( logging.WARNING, "A STANDARD simple exponential smoothing forecast has been completed.") return { 'forecast_breakdown': forecast_breakdown, 'mape': mape, 'statistics': stats, 'forecast': simple_forecast, 'alpha': smoothing_level_constant, 'standard_error': standard_error, 'regression': [i for i in regression_line.get('regression')] }
def _ses_forecast(smoothing_level_constant, forecast_demand, forecast_length): """ Args: smoothing_level_constant: forecast_demand: forecast_length: Returns: """ forecast_breakdown = [i for i in forecast_demand.simple_exponential_smoothing(smoothing_level_constant)] ape = LinearRegression(forecast_breakdown) mape = forecast_demand.mean_aboslute_percentage_error_opt(forecast_breakdown) stats = ape.least_squared_error() simple_forecast = forecast_demand.simple_exponential_smoothing_forecast(forecast=forecast_breakdown, forecast_length=forecast_length) regression_line = regr_ln(stats=stats) log.log(logging.WARNING, "A STANDARD simple exponential smoothing forecast has been completed.") return {'forecast_breakdown': forecast_breakdown, 'mape': mape, 'statistics': stats, 'forecast': simple_forecast, 'alpha': smoothing_level_constant, 'regression': [i for i in regression_line.get('regression')]}
def simple_exponential_smoothing_evo( self, smoothing_level_constant: float, initial_estimate_period: int, recombination_type: str = 'single_point', population_size: int = 10, forecast_length: int = 5) -> dict: """ Simple exponential smoothing using evolutionary algorithm for optimising smoothing level constant (alpha value) Args: initial_estimate_period (int): The number of previous data points required for initial level estimate. smoothing_level_constant (float): Best guess at smoothing level constant appropriate for forecast. Returns: dict: Example: """ log.log( logging.INFO, "Executing simple exponential smoothing. " "SMOOTHING_LEVEL: {} " "INITIAL_ESTIMATE_PERIOD: {} " "RECOMBINATION_TYPE: {} " "POPULATION_SIZE: {} " "FORECAST_LENGTH: {}".format(smoothing_level_constant, initial_estimate_period, recombination_type, population_size, forecast_length)) if None != self.__recombination_type: recombination_type = self.__recombination_type sum_orders = 0 for demand in self.__orders[:initial_estimate_period]: sum_orders += demand avg_orders = sum_orders / initial_estimate_period forecast_demand = Forecast(self.__orders, avg_orders) #calls simple_exponential_smoothing method from Forecast object ses_forecast = [ i for i in forecast_demand.simple_exponential_smoothing( *(smoothing_level_constant, )) ] sum_squared_error = forecast_demand.sum_squared_errors( ses_forecast, smoothing_level_constant) standard_error = forecast_demand.standard_error( sum_squared_error, len(self.__orders), smoothing_level_constant) evo_mod = OptimiseSmoothingLevelGeneticAlgorithm( orders=self.__orders, average_order=avg_orders, smoothing_level=smoothing_level_constant, population_size=population_size, standard_error=standard_error, recombination_type=recombination_type) optimal_alpha = evo_mod.initial_population() optimal_ses_forecast = [ i for i in forecast_demand.simple_exponential_smoothing( optimal_alpha[1]) ] ape = LinearRegression(optimal_ses_forecast) mape = forecast_demand.mean_aboslute_percentage_error_opt( optimal_ses_forecast) stats = ape.least_squared_error() simple_forecast = forecast_demand.simple_exponential_smoothing_forecast( forecast=optimal_ses_forecast, forecast_length=forecast_length) sum_squared_error = forecast_demand.sum_squared_errors( optimal_ses_forecast, optimal_alpha[1]) standard_error = forecast_demand.standard_error( sum_squared_error, len(self.__orders), optimal_alpha[1]) regression = { 'regression': [(stats.get('slope') * i) + stats.get('intercept') for i in range(0, 12)] } log.log( logging.INFO, "An OPTIMISED simple exponential smoothing forecast has been completed" ) return { 'forecast_breakdown': optimal_ses_forecast, 'mape': mape, 'statistics': stats, 'forecast': simple_forecast, 'optimal_alpha': optimal_alpha[1], 'standard_error': standard_error, 'regression': [i for i in regression.get('regression')] }
def holts_trend_corrected_exponential_smoothing_forecast(demand: list, alpha: float, gamma: float, forecast_length: int = 4, initial_period: int = 6, **kwargs): if len(kwargs) != 0: if kwargs['optimise']: total_orders = 0 for order in demand[:initial_period]: total_orders += order avg_orders = total_orders / initial_period forecast_demand = Forecast(demand) processed_demand = [{'t': index, 'demand': order} for index, order in enumerate(demand, 1)] stats = LinearRegression(processed_demand) log_stats = stats.least_squared_error(slice_end=6) htces_forecast = [i for i in forecast_demand.holts_trend_corrected_exponential_smoothing(alpha=alpha, gamma=gamma, intercept=log_stats.get( 'intercept'), slope=log_stats.get( 'slope'))] sum_squared_error = forecast_demand.sum_squared_errors_indi_htces(squared_error=[htces_forecast], alpha=alpha, gamma=gamma) standard_error = forecast_demand.standard_error(sum_squared_error, len(demand), (alpha, gamma), 2) evo_mod = OptimiseSmoothingLevelGeneticAlgorithm(orders=demand, average_order=avg_orders, population_size=10, standard_error=standard_error, recombination_type='single_point') optimal_alpha = evo_mod.initial_population(individual_type='htces') log.log(logging.WARNING, 'An optimal alpha {} and optimal gamma {} have been found.'.format(optimal_alpha[1][0], optimal_alpha[1][1])) htces_forecast = [i for i in forecast_demand.holts_trend_corrected_exponential_smoothing(alpha=optimal_alpha[1][0], gamma=optimal_alpha[1][1], intercept=log_stats.get( 'intercept'), slope=log_stats.get('slope'))] holts_forecast = forecast_demand.holts_trend_corrected_forecast(forecast=htces_forecast, forecast_length=forecast_length) log.log(logging.INFO, 'An OPTIMAL Holts trend exponential smoothing forecast has been generated.') sum_squared_error_opt = forecast_demand.sum_squared_errors_indi_htces(squared_error=[htces_forecast], alpha=optimal_alpha[1][0], gamma=optimal_alpha[1][1]) standard_error_opt = forecast_demand.standard_error(sum_squared_error_opt, len(demand), (optimal_alpha[1][0], optimal_alpha[1][1]), 2) ape = LinearRegression(htces_forecast) mape = forecast_demand.mean_aboslute_percentage_error_opt(htces_forecast) stats = ape.least_squared_error() regression_line = deepcopy(regr_ln(stats=stats)) return {'forecast_breakdown': htces_forecast, 'forecast': holts_forecast, 'mape': mape, 'statistics': stats, 'optimal_alpha': optimal_alpha[1][0], 'optimal_gamma': optimal_alpha[1][1], 'SSE': sum_squared_error_opt, 'standard_error': standard_error_opt, 'original_standard_error': standard_error, 'regression': [i for i in regression_line.get('regression')]} else: forecast_demand = Forecast(demand) processed_demand = [{'t': index, 'demand': order} for index, order in enumerate(demand, 1)] stats = LinearRegression(processed_demand) log_stats = stats.least_squared_error(slice_end=6) htces_forecast = [i for i in forecast_demand.holts_trend_corrected_exponential_smoothing(alpha=alpha, gamma=gamma, intercept=log_stats.get( 'intercept'), slope=log_stats.get( 'slope'))] holts_forecast = forecast_demand.holts_trend_corrected_forecast(forecast=htces_forecast, forecast_length=forecast_length) log.log(logging.INFO, 'A STANDARD Holts trend exponential smoothing forecast has been generated.') sum_squared_error = forecast_demand.sum_squared_errors_indi_htces(squared_error=[htces_forecast], alpha=alpha, gamma=gamma) ape = LinearRegression(htces_forecast) mape = forecast_demand.mean_aboslute_percentage_error_opt(htces_forecast) stats = ape.least_squared_error() regression_line = regr_ln(stats=stats) log.log(logging.WARNING, "A STANDARD Holts trend exponential smoothing forecast has been completed.") return {'forecast_breakdown': htces_forecast, 'forecast': holts_forecast, 'mape': mape, 'statistics': stats, 'sum_squared_errors': sum_squared_error, 'regression': [i for i in regression_line.get('regression')]}
def holts_trend_corrected_exponential_smoothing_forecast( demand: list, alpha: float, gamma: float, forecast_length: int = 4, initial_period: int = 6, optimise: bool = True) -> dict: """ Performs a holt's trend corrected exponential smoothing forecast on known demand Args: demand (list): Original historical demand. alpha (float): smoothing constant gamma (float): forecast_length (int): initial_period (int): optimise (bool): Flag for using solver. Default is set to True. Returns: dict: Simple exponential forecast. """ if optimise: total_orders = 0 for order in demand[:initial_period]: total_orders += order avg_orders = total_orders // initial_period forecast_demand = Forecast(demand) processed_demand = [{ 't': index, 'demand': order } for index, order in enumerate(demand, 1)] stats = LinearRegression(processed_demand) log_stats = stats.least_squared_error(slice_end=6) htces_forecast = [ i for i in forecast_demand.holts_trend_corrected_exponential_smoothing( alpha=alpha, gamma=gamma, intercept=log_stats.get('intercept'), slope=log_stats.get('slope')) ] sum_squared_error = forecast_demand.sum_squared_errors_indi_htces( squared_error=[htces_forecast], alpha=alpha, gamma=gamma) standard_error = forecast_demand.standard_error( sum_squared_error, len(demand), (alpha, gamma), 2) evo_mod = OptimiseSmoothingLevelGeneticAlgorithm( orders=demand, average_order=avg_orders, population_size=10, standard_error=standard_error, recombination_type='single_point') optimal_alpha = evo_mod.initial_population(individual_type='htces') log.log( logging.WARNING, 'An optimal alpha {} and optimal gamma {} have been found.'.format( optimal_alpha[1][0], optimal_alpha[1][1])) htces_forecast = [ i for i in forecast_demand.holts_trend_corrected_exponential_smoothing( alpha=optimal_alpha[1][0], gamma=optimal_alpha[1][1], intercept=log_stats.get('intercept'), slope=log_stats.get('slope')) ] holts_forecast = forecast_demand.holts_trend_corrected_forecast( forecast=htces_forecast, forecast_length=forecast_length) log.log( logging.INFO, 'An OPTIMAL Holts trend exponential smoothing forecast has been generated.' ) sum_squared_error_opt = forecast_demand.sum_squared_errors_indi_htces( squared_error=[htces_forecast], alpha=optimal_alpha[1][0], gamma=optimal_alpha[1][1]) standard_error_opt = forecast_demand.standard_error( sum_squared_error_opt, len(demand), (optimal_alpha[1][0], optimal_alpha[1][1]), 2) ape = LinearRegression(htces_forecast) mape = forecast_demand.mean_aboslute_percentage_error_opt( htces_forecast) stats = ape.least_squared_error() regression_line = deepcopy(_regr_ln(stats=stats)) return { 'forecast_breakdown': htces_forecast, 'forecast': holts_forecast, 'mape': mape, 'statistics': stats, 'optimal_alpha': optimal_alpha[1][0], 'optimal_gamma': optimal_alpha[1][1], 'SSE': sum_squared_error_opt, 'standard_error': standard_error_opt, 'original_standard_error': standard_error, 'regression': [i for i in regression_line.get('regression')] } else: forecast_demand = Forecast(demand) processed_demand = [{ 't': index, 'demand': order } for index, order in enumerate(demand, 1)] stats = LinearRegression(processed_demand) log_stats = stats.least_squared_error(slice_end=6) htces_forecast = [ i for i in forecast_demand.holts_trend_corrected_exponential_smoothing( alpha=alpha, gamma=gamma, intercept=log_stats.get('intercept'), slope=log_stats.get('slope')) ] holts_forecast = forecast_demand.holts_trend_corrected_forecast( forecast=htces_forecast, forecast_length=forecast_length) log.log( logging.INFO, 'A STANDARD Holts trend exponential smoothing forecast has been generated.' ) sum_squared_error = forecast_demand.sum_squared_errors_indi_htces( squared_error=[htces_forecast], alpha=alpha, gamma=gamma) ape = LinearRegression(htces_forecast) mape = forecast_demand.mean_aboslute_percentage_error_opt( htces_forecast) stats = ape.least_squared_error() regression_line = _regr_ln(stats=stats) log.log( logging.WARNING, "A STANDARD Holts trend exponential smoothing forecast has been completed." ) return { 'forecast_breakdown': htces_forecast, 'forecast': holts_forecast, 'mape': mape, 'statistics': stats, 'sum_squared_errors': sum_squared_error, 'regression': [i for i in regression_line.get('regression')] }