예제 #1
0
def filterData(data, levels):

    consts = Constants()

    filt_data = np.empty((int(levels), 4))

    for ii, line in enumerate(data):

        filt_data[ii, 0] = float(line[16:21])
        a = float(line[22:27]) / 10 + 273.15

        try:
            filt_data[ii, 1] = (consts.GAMMA * consts.R / consts.M_0 * a)**0.5
        except TypeError:
            filt_data[ii, 1] = np.nan

        filt_data[ii, 3] = (float(line[40:45]) + 180) % 360
        filt_data[ii, 2] = float(line[46:51]) / 10

    filt_data[filt_data == -9999.0] = np.nan

    filt_data = filt_data[~np.isnan(filt_data).any(axis=1)]

    filt_data = np.flip(filt_data, axis=0)

    return filt_data
예제 #2
0
def parseWeather(setup, t=0, lat=None, lon=None):
    """ Generates a cubic weather profile of all altitudes within a 5 deg lat/lon area from lat/lon centre. 
    """

    consts = Constants()
    # Parse weather type
    setup.weather_type = setup.weather_type.lower()
    if setup.weather_type not in [
            'custom', 'none', 'ecmwf', 'merra', 'ukmo', 'binary', 'radio'
    ]:
        print(
            'INI ERROR: [Atmospheric] weather_type must be one of: custom, radio, none, ecmwf, merra, ukmo, binary'
        )
        return None

    # Custom weather data
    if setup.weather_type == 'custom':

        # try:
        sounding = readCustAtm(setup.sounding_file, consts)
        # except:
        #     print('ERROR: Could not read custom atmosphere profile!')
        #     exit()

        # Check file name
        if len(sounding) < 2:
            print('FILE ERROR: file must have at least two data points!')
            sys.exit()

    # MERRA-2
    elif setup.weather_type == 'merra':

        # Check file type
        if '.nc' not in setup.sounding_file:
            print("FILE ERROR: custom data set must be a .nc file!")
            sys.exit()

        # # Run data fetching script
        # if setup.get_data == True:
        #     print('Getting data...')
        #     fetchMERRA(setup)

        try:
            sounding = storeHDF(setup.sounding_file, consts)
        except:
            print('ERROR: could not read merra atmosphere profile!')
            exit()

    # ECMWF
    elif setup.weather_type == 'ecmwf':

        # Check file type
        if '.nc' not in setup.sounding_file:
            print("FILE ERROR: custom data set must be a .nc file from ECMWF!")
            return None

        # # Run data fetching script
        # if setup.get_data == True:
        #     fetchECMWF(setup, setup.sounding_file)

        # GetIRISData/MakeIRISPicks

        try:

            #Get closest hour
            start_time = (setup.fireball_datetime.hour + np.round(
                setup.fireball_datetime.minute / 60) + t) % 24
            if lat is not None and lon is not None:
                sounding = storeNetCDFECMWF(setup.sounding_file,
                                            lat,
                                            lon,
                                            consts,
                                            start_time=start_time)

            else:
                sounding = storeNetCDFECMWF(setup.sounding_file,
                                            setup.lat_centre,
                                            setup.lon_centre,
                                            consts,
                                            start_time=start_time)

        # SeismicTrajectory
        except:

            try:
                start_time = (setup.fireball_datetime.hour + t) % 24
                sounding = storeNetCDFECMWF(setup.sounding_file,
                                            setup.x0,
                                            setup.y0,
                                            consts,
                                            start_time=start_time)
            except:
                print(
                    "ERROR: Unable to use weather file, or setup.start_datetime/setup.atm_hour is set up incorrectly. Try checking if sounding_file exists"
                )

    # UKMO
    elif setup.weather_type == 'ukmo':
        # Check file type
        if '.nc' not in setup.sounding_file:
            print("FILE ERROR: custom data set must be a .nc file from UKMO!")
            sys.exit()

        try:
            sounding = storeNetCDFUKMO(setup.sounding_file, setup.search_area,
                                       consts)
        except:
            print('ERROR: Could not read UKMO atmosphere profile!')
            exit()

    elif setup.weather_type == 'binary':

        sounding = storeAus(consts)

    elif setup.weather_type == 'radio':

        time_of_sound = [
            setup.fireball_datetime.year, setup.fireball_datetime.month,
            setup.fireball_datetime.day, setup.fireball_datetime.hour
        ]
        sounding = parseRadio(setup.sounding_file, time_of_sound)

    else:

        # Sample fake weather profile, the absolute minimum that can be passed
        sounding = np.array([[0.0, setup.v_sound, 0.0, 0.0],
                             [0.0, setup.v_sound, 0.0, 0.0],
                             [99999.0, setup.v_sound, 0.0, 0.0]])

    return sounding
예제 #3
0
import pyximport

pyximport.install(setup_args={'include_dirs': [np.get_include()]})

from scipy.interpolate import CubicSpline

from supra.Utils.AngleConv import roundToNearest
from supra.Utils.Classes import Constants
from supra.Supracenter.cyzInteg import zInteg
from supra.GUI.Tools.GUITools import *
from supra.Atmosphere.Pressure import pressureConv, estPressure
from supra.Atmosphere.NRLMSISE import getAtmDensity
from wmpl.Utils.TrajConversions import date2JD
from supra.Atmosphere.HWM93 import getHWM

consts = Constants()


class AtmosType:
    def __init__(self):
        pass

    def interp(self, lat, lon, div=0.25):
        """
        Approximately interpolates grid points of a division between point A and point B

        lat: [lat_initial, lat_final]
        lon: [lon_initial, lon_final]
        """

        # Collect interpolated points
예제 #4
0
import numpy as np
import matplotlib.pyplot as plt
import scipy

from supra.Utils.Classes import Constants, Position

c = Constants()


# function [dp,dpws,dpratio,tau,tauws,Z,td,talt,Ro] = overpressureihmod_Ro(meteor,stn,Ro,v,theta,dphi,atmos,sw);
def overpressureihmod_Ro(meteor, stn, Ro, v, theta, dphi, atmos, sw):

    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    # %
    # %  Theoretical Acoustic Overpressure Prediction using Line Source Theory
    # %  (ReVelle D.O., 1976: On Meteor-Generated Infrasound, JGR, 81, pp.1217-1229.
    # %
    # %  Usage:
    # %   [dp,dpws,dpratio,tau,tauws,Z,td,talt,Ro,dm] = overpressureihmod(meteor,stn,mass,rhom,v,theta,dphi,atmos,sw);
    # %
    # %  Given: meteor - [latitude,longitude,altitude] of meteor source [DD.ddd,DD.ddd,km]
    # %         stn    - [latitude,longitude,elevation] of observing station [DD.ddd,DD.ddd,km]
    # %         mass   - meteoroid mass in kilograms (kg)
    # %         rhom   - meteoroid bulk density in kilograms per metre cubed (kg/m^3)
    # %         v      - meteoroid velocity in kilometres per second (km/s)
    # %         theta  - entry angle of meteoroid measured from horizontal (degrees)
    # %         dphi   - angular deviation from the meteoroid trajectory (degrees)
    # %         atmos  - atmospheric model (nx3) - MUST encompass altitudes for direct propagation
    # %                    - altitude (m)
    # %                    - pressure (hPa/mbars)
    # %                    - temperature (oC)
예제 #5
0
파일: plot.py 프로젝트: wmpg/Supracenter
def outputWeather(n_stations, x_opt, stns, setup, ref_pos, atmos, output_name,
                  s_name, kotc, w, prefs, theo):
    """ Function to calculate the results of the optimal Supracenter and export interpolated weather data
        from each station.

    Arguments:
        n_stations: [int] number of stations
        x_opt: [list] lat, lon, and height of the optimal supracenter
        xstn: [list] lat, lon, and height of all the stations
        setup: [Object] object storing user-defined setup
        consts: [Object] object storing physical constants
        ref_pos: [list] mean position of the stations to act as the origin for the local coordinate system
        dataset: [ndarray] atmospheric profile of search area
        output_name: [string] folder name to save output files in
        s_name: [list] name of all the stations
        kotc: [list] user-defined occurence time [HH, MM, SS]
        tobs: [list] station arrival times to each station
        w: [list] weights of each station


    Returns:
        time3D: [list] calculated travel time to each station
        az: [list] initial azimuth angle to each station
        tf: [list] initial takeoff angle to each station
        r: [list] residuals to each station            
    
    """
    consts = Constants()
    # Station Times
    tobs = stns[0:n_stations, 4]

    # Station Location
    xstn = stns[0:n_stations, 0:3]

    # Travel time to each station
    time3D = np.zeros(n_stations)

    # Initial azimuths angles of each station
    az = np.zeros(n_stations)

    # Initial takeoff angles of each station
    tf = np.zeros(n_stations)

    # difference in theoretical and simulated travel times
    sotc = np.zeros_like(tobs)

    #difference in theoretical and simulated travel times
    r = np.zeros_like(tobs)

    trace = []

    # Find parameters of optimal location
    print('Exporting weather profiles...')
    for j in range(n_stations):
        #print(np.array(x_opt), np.array(xstn[j, :]))
        # get interpolated weather profile
        D = Position(0, 0, 0)
        D.x, D.y, D.z = xstn[j, 0], xstn[j, 1], xstn[j, 2]
        D.pos_geo(ref_pos)
        if not theo:
            sounding, _ = atmos.getSounding(lat=[x_opt.lat, D.lat],
                                            lon=[x_opt.lon, D.lon],
                                            heights=[x_opt.elev, D.elev],
                                            ref_time=setup.fireball_datetime)

            # Rotate winds to match with coordinate system
            #sounding[:, 3] = np.radians(angle2NDE(np.degrees(sounding[:, 3])))

            # Export the interpolated weather profiles from the optimal Supracenter for each station
            # with open(os.path.join(output_name, s_name[j] + '_sounding.txt'), 'w') as f:

            #     # With winds
            #     if prefs.wind_en == True:
            #         if prefs.atm_type == 'custom' or prefs.atm_type == 'none' or prefs.atm_type == 'radio':
            #             f.write('| Height (m) | Temp (K) | soundSpd (m/s) | wdSpd (m/s) | wdDir (deg fN) |\n')
            #         else:
            #             f.write('| Latitude (deg N) | Longitude (deg E) | Height (m) | Temp (K) | soundSpd (m/s) | wdSpd (m/s) | wdDir (deg fN) |\n')

            #     # No winds
            #     else:
            #         if prefs.atm_type == 'custom' or prefs.atm_type == 'none' or prefs.atm_type== 'radio':
            #             f.write('| Height (m) | Temp (K) | soundSpd (m/s) |\n')
            #         else:
            #             f.write('| Latitude (deg N) | Longitude (deg E) | Height (m) | Temp (K) | soundSpd (m/s) |\n')

            # for ii in range(len(sounding)):

            #     if prefs.wind_en == True:
            #         if prefs.atm_type == 'custom' or prefs.atm_type == 'none' or prefs.atm_type == 'radio':
            #             f.write('|  {:8.2f}  |  {:7.3f} |    {:6.4f}    |   {:7.3f}   |     {:6.2f}     |\n'\
            #                 .format(sounding[ii, 0], sounding[ii, 1]**2*consts.M_0/consts.GAMMA/consts.R, \
            #                     sounding[ii, 1], sounding[ii, 2], sounding[ii, 3]))
            #         else:
            #             f.write('|       {:7.4f}    |      {:7.4f}    |  {:8.2f}  |  {:7.3f} |    {:6.4f}    |   {:7.3f}   |     {:6.2f}     |\n'\
            #                 .format(points[ii][0], points[ii][1], sounding[ii, 0], sounding[ii, 1]**2*consts.M_0/consts.GAMMA/consts.R, \
            #                     sounding[ii, 1], sounding[ii, 2], sounding[ii, 3]))
            #     else:
            #         if prefs.atm_type == 'custom' or prefs.atm_type == 'none' or prefs.atm_type == 'radio':
            #             f.write('|  {:8.2f}  |  {:7.3f} |    {:6.4f}    |\n'\
            #                 .format(sounding[ii, 0], sounding[ii, 1]**2*consts.M_0/consts.GAMMA/consts.R, sounding[ii, 1]))
            #         else:
            #             f.write('|       {:7.4f}    |      {:7.4f}    |  {:8.2f}  |  {:7.3f} |    {:6.4f}    |\n'\
            #                 .format(points[ii][0], points[ii][1], sounding[ii, 0], sounding[ii, 1]**2*consts.M_0/consts.GAMMA/consts.R, sounding[ii, 1]))

            # ray tracing function
            # _, _, _, _, temp_trace = slowscan(x_opt.xyz, np.array(xstn[j, :]), sounding, \
            #                  wind=prefs.wind_en, n_theta=prefs.pso_theta, n_phi=prefs.pso_phi,\
            #                     h_tol=prefs.pso_min_ang, v_tol=prefs.pso_min_dist)

            time3D[j], _, _, _ = cyscan(x_opt.xyz, np.array(xstn[j, :]), sounding, \
                         wind=prefs.wind_en, h_tol=prefs.pso_min_ang, v_tol=prefs.pso_min_dist, processes=1)
        else:
            time3D[j] = x_opt.pos_distance(D) / prefs.avg_sp_sound
        # trace.append(temp_trace)

        # find residuals
        sotc[j] = tobs[j] - time3D[j]

    # for ii, element in enumerate(time3D):
    #     if np.isnan(element):
    #         w[ii] = 0

    # User defined occurrence time
    if kotc != None:
        motc = kotc
        index = []

    # elif setup.manual_fragmentation_search != '' and len(setup.manual_fragmentation_search) > 0:
    #     motc = setup.manual_fragmentation_search[3]

    # Unknown occurrence time

    else:
        w = np.array([1] * len(sotc))

        index = np.isnan(sotc)
        sotc[index] = 0
        motc = np.dot(w, sotc) / sum(w)
    # Station residuals (from average)

    r = sotc - motc
    r[index] = np.nan

    return time3D, az, tf, r, motc, sotc, trace