def main(): if len(sys.argv) < 3: print_usage() return 2 try: subjective_model = sys.argv[1] dataset_filepath = sys.argv[2] except ValueError: print_usage() return 2 output_dir = get_cmd_option(sys.argv, 3, len(sys.argv), '--output-dir') print_ = cmd_option_exists(sys.argv, 3, len(sys.argv), '--print') do_plot = ['raw_scores', 'quality_scores'] if subjective_model in ['MLE', 'MLE_CO', 'DMOS_MLE', 'DMOS_MLE_CO']: do_plot.append('subject_scores') if subjective_model in ['MLE', 'DMOS_MLE']: do_plot.append('content_scores') try: subjective_model_class = SubjectiveModel.find_subclass(subjective_model) except Exception as e: print "Error: " + str(e) return 1 print "Run model {} on dataset {}".format( subjective_model_class.__name__, get_file_name_with_extension(dataset_filepath) ) dataset, subjective_models, results = run_subjective_models( dataset_filepath=dataset_filepath, subjective_model_classes = [subjective_model_class,], normalize_final=False, # True or False do_plot=do_plot, plot_type='errorbar', gradient_method='simplified', ) if print_: print("Dataset: {}".format(dataset_filepath)) print("Subjective Model: {} {}".format(subjective_models[0].TYPE, subjective_models[0].VERSION)) print("Result:") json.dumps(results[0], indent=4, sort_keys=True) if output_dir is None: DisplayConfig.show() else: print("Output wrote to {}.".format(output_dir)) DisplayConfig.show(write_to_dir=output_dir) with open(os.path.join(output_dir, 'sureal.json'), 'w') as out_f: json.dump(results[0], out_f, indent=4, sort_keys=True) return 0
def main(): if len(sys.argv) < 3: print_usage() return 2 try: quality_type = sys.argv[1] test_dataset_filepath = sys.argv[2] except ValueError: print_usage() return 2 vmaf_model_path = get_cmd_option(sys.argv, 3, len(sys.argv), '--vmaf-model') cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result') parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize') print_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--print-result') suppress_plot = cmd_option_exists(sys.argv, 3, len(sys.argv), '--suppress-plot') vmaf_phone_model = cmd_option_exists(sys.argv, 3, len(sys.argv), '--vmaf-phone-model') pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool') if not (pool_method is None or pool_method in POOL_METHODS): print '--pool can only have option among {}'.format( ', '.join(POOL_METHODS)) return 2 subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model') try: if subj_model is not None: from sureal.subjective_model import SubjectiveModel subj_model_class = SubjectiveModel.find_subclass(subj_model) else: subj_model_class = None except Exception as e: print "Error: " + str(e) return 1 save_plot_dir = get_cmd_option(sys.argv, 3, len(sys.argv), '--save-plot') try: runner_class = QualityRunner.find_subclass(quality_type) except Exception as e: print "Error: " + str(e) return 1 if vmaf_model_path is not None and runner_class != VmafQualityRunner and \ runner_class != BootstrapVmafQualityRunner: print "Input error: only quality_type of VMAF accepts --vmaf-model." print_usage() return 2 if vmaf_phone_model and runner_class != VmafQualityRunner and \ runner_class != BootstrapVmafQualityRunner: print "Input error: only quality_type of VMAF accepts --vmaf-phone-model." print_usage() return 2 try: test_dataset = import_python_file(test_dataset_filepath) except Exception as e: print "Error: " + str(e) return 1 if cache_result: result_store = FileSystemResultStore() else: result_store = None # pooling if pool_method == 'harmonic_mean': aggregate_method = ListStats.harmonic_mean elif pool_method == 'min': aggregate_method = np.min elif pool_method == 'median': aggregate_method = np.median elif pool_method == 'perc5': aggregate_method = ListStats.perc5 elif pool_method == 'perc10': aggregate_method = ListStats.perc10 elif pool_method == 'perc20': aggregate_method = ListStats.perc20 else: # None or 'mean' aggregate_method = np.mean if vmaf_phone_model: enable_transform_score = True else: enable_transform_score = None try: if suppress_plot: raise AssertionError import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1) assets, results = run_test_on_dataset( test_dataset, runner_class, ax, result_store, vmaf_model_path, parallelize=parallelize, aggregate_method=aggregate_method, subj_model_class=subj_model_class, enable_transform_score=enable_transform_score) bbox = {'facecolor': 'white', 'alpha': 0.5, 'pad': 20} ax.annotate('Testing Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) # ax.set_xlim([-10, 110]) # ax.set_ylim([-10, 110]) plt.tight_layout() if save_plot_dir is None: DisplayConfig.show() else: DisplayConfig.show(write_to_dir=save_plot_dir) except ImportError: print_matplotlib_warning() assets, results = run_test_on_dataset( test_dataset, runner_class, None, result_store, vmaf_model_path, parallelize=parallelize, aggregate_method=aggregate_method, subj_model_class=subj_model_class, enable_transform_score=enable_transform_score) except AssertionError: assets, results = run_test_on_dataset( test_dataset, runner_class, None, result_store, vmaf_model_path, parallelize=parallelize, aggregate_method=aggregate_method, subj_model_class=subj_model_class, enable_transform_score=enable_transform_score) if print_result: for result in results: print result print '' return 0
def main(): if len(sys.argv) < 5: print_usage() return 2 try: train_dataset_filepath = sys.argv[1] feature_param_filepath = sys.argv[2] model_param_filepath = sys.argv[3] output_model_filepath = sys.argv[4] except ValueError: print_usage() return 2 try: train_dataset = import_python_file(train_dataset_filepath) feature_param = import_python_file(feature_param_filepath) model_param = import_python_file(model_param_filepath) except Exception as e: print("Error: %s" % e) return 1 cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result') parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize') suppress_plot = cmd_option_exists(sys.argv, 3, len(sys.argv), '--suppress-plot') pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool') if not (pool_method is None or pool_method in POOL_METHODS): print('--pool can only have option among {}'.format( ', '.join(POOL_METHODS))) return 2 subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model') try: if subj_model is not None: from sureal.subjective_model import SubjectiveModel subj_model_class = SubjectiveModel.find_subclass(subj_model) else: subj_model_class = None except Exception as e: print("Error: %s" % e) return 1 save_plot_dir = get_cmd_option(sys.argv, 3, len(sys.argv), '--save-plot') if cache_result: result_store = FileSystemResultStore() else: result_store = None # pooling if pool_method == 'harmonic_mean': aggregate_method = ListStats.harmonic_mean elif pool_method == 'min': aggregate_method = np.min elif pool_method == 'median': aggregate_method = np.median elif pool_method == 'perc5': aggregate_method = ListStats.perc5 elif pool_method == 'perc10': aggregate_method = ListStats.perc10 elif pool_method == 'perc20': aggregate_method = ListStats.perc20 else: # None or 'mean' aggregate_method = np.mean logger = None try: if suppress_plot: raise AssertionError from vmaf import plt fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1) train_test_vmaf_on_dataset( train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=ax, test_ax=None, result_store=result_store, parallelize=parallelize, logger=logger, output_model_filepath=output_model_filepath, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) bbox = {'facecolor': 'white', 'alpha': 0.5, 'pad': 20} ax.annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) # ax.set_xlim([-10, 110]) # ax.set_ylim([-10, 110]) plt.tight_layout() if save_plot_dir is None: DisplayConfig.show() else: DisplayConfig.show(write_to_dir=save_plot_dir) except ImportError: print_matplotlib_warning() train_test_vmaf_on_dataset( train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=None, test_ax=None, result_store=result_store, parallelize=parallelize, logger=logger, output_model_filepath=output_model_filepath, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) except AssertionError: train_test_vmaf_on_dataset( train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=None, test_ax=None, result_store=result_store, parallelize=parallelize, logger=logger, output_model_filepath=output_model_filepath, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) return 0