예제 #1
0
    def test_bijection_is_well_behaved(self):
        batch_size = 10
        setups = [
            (2, [1, 2, 2], [4, 1, 1]),
            (2, [1, 4, 4], [4, 2, 2]),
            (2, [2, 4, 4], [8, 2, 2]),
            (2, [3, 4, 4], [12, 2, 2]),
            (2, [1, 2, 2], [4, 1, 1]),
            (2, [1, 4, 4], [4, 2, 2]),
            (2, [2, 4, 4], [8, 2, 2]),
            (2, [3, 4, 4], [12, 2, 2]),
            (3, [1, 3, 3], [9, 1, 1]),
            (3, [1, 9, 9], [9, 3, 3]),
            (3, [2, 9, 9], [18, 3, 3]),
            (3, [3, 9, 9], [27, 3, 3]),
            (3, [1, 3, 3], [9, 1, 1]),
            (3, [1, 9, 9], [9, 3, 3]),
            (3, [2, 9, 9], [18, 3, 3]),
            (3, [3, 9, 9], [27, 3, 3]),
        ]

        for ordered in (False, True):
            for factor, x_shape, expected_z_shape in setups:
                with self.subTest(factor=factor,
                                  ordered=ordered,
                                  x_shape=x_shape,
                                  expected_z_shape=expected_z_shape):
                    x = torch.randn(batch_size, *x_shape)
                    bijection = Squeeze2d(factor, ordered=ordered)
                    self.assert_bijection_is_well_behaved(
                        bijection, x, z_shape=(batch_size, *expected_z_shape))
예제 #2
0
 def test_inverse_wrong_shape(self):
     batch_size = 10
     bijection = Squeeze2d(2)
     for shape in [[3, 4, 4], [33, 4, 4], [32, 4]]:
         with self.subTest(shape=shape):
             z = torch.randn(batch_size, *shape)
             with self.assertRaises(AssertionError):
                 bijection.inverse(z)
예제 #3
0
 def test_forward_wrong_shape(self):
     batch_size = 10
     bijection = Squeeze2d(2)
     for shape in [[32, 3, 3], [32, 5, 5], [32, 4]]:
         with self.subTest(shape=shape):
             x = torch.randn(batch_size, *shape)
             with self.assertRaises(AssertionError):
                 bijection.forward(x)
예제 #4
0
def reduction_layer(channels, items):
    return [
        *perm_norm_bi(channels),
        *perm_norm_bi(channels),
        *perm_norm_bi(channels),
        Squeeze2d(4),
        Slice(StandardNormal((channels * 2, items)), num_keep=channels * 2),
    ]
예제 #5
0
    def test_forward_ordered(self):
        bijection = Squeeze2d(2, ordered=True)
        x = torch.LongTensor([[[[11, 12, 21, 22], [13, 14, 23, 24],
                                [31, 32, 41, 42], [33, 34, 43, 44]],
                               [[110, 120, 210, 220], [130, 140, 230, 240],
                                [310, 320, 410, 420], [330, 340, 430, 440]]]])
        z, _ = bijection.forward(x)

        def assert_channel_equal(channel, values):
            self.assertEqual(z[0, channel, ...], torch.LongTensor(values))

        assert_channel_equal(0, [[11, 21], [31, 41]])
        assert_channel_equal(1, [[110, 210], [310, 410]])
        assert_channel_equal(2, [[12, 22], [32, 42]])
        assert_channel_equal(3, [[120, 220], [320, 420]])
        assert_channel_equal(4, [[13, 23], [33, 43]])
        assert_channel_equal(5, [[130, 230], [330, 430]])
        assert_channel_equal(6, [[14, 24], [34, 44]])
        assert_channel_equal(7, [[140, 240], [340, 440]])
예제 #6
0
transforms=[
    UniformDequantization(num_bits=8),
    Augment(StandardUniform((3, 32, 32)), x_size=3),
    AffineCouplingBijection(net(6)),
    ActNormBijection2d(6),
    Conv1x1(6),
    AffineCouplingBijection(net(6)),
    ActNormBijection2d(6),
    Conv1x1(6),
    AffineCouplingBijection(net(6)),
    ActNormBijection2d(6),
    Conv1x1(6),
    AffineCouplingBijection(net(6)),
    ActNormBijection2d(6),
    Conv1x1(6),
    Squeeze2d(),
    Slice(StandardNormal((12, 16, 16)), num_keep=12),
    AffineCouplingBijection(net(12)),
    ActNormBijection2d(12),
    Conv1x1(12),
    AffineCouplingBijection(net(12)),
    ActNormBijection2d(12),
    Conv1x1(12),
    AffineCouplingBijection(net(12)),
    ActNormBijection2d(12),
    Conv1x1(12),
    AffineCouplingBijection(net(12)),
    ActNormBijection2d(12),
    Conv1x1(12),
    Squeeze2d(),
    Slice(StandardNormal((24, 8, 8)), num_keep=24),
예제 #7
0
    def __init__(self, data_shape, num_bits,
                 base_distribution, num_scales, num_steps, actnorm, 
                 vae_hidden_units,
                 coupling_network,
                 dequant, dequant_steps, dequant_context,
                 coupling_blocks, coupling_channels, coupling_dropout,
                 coupling_gated_conv=None, coupling_depth=None, coupling_mixtures=None):

        assert len(base_distribution) == 1, "Only a single base distribution is supported"
        transforms = []
        current_shape = data_shape
        if num_steps == 0: num_scales = 0
        
        if dequant == 'uniform' or num_steps == 0 or num_scales == 0:
            # no bijective flows defaults to only using uniform dequantization
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':            
            dequantize_flow = DequantizationFlow(data_shape=data_shape,
                                                 num_bits=num_bits,
                                                 num_steps=dequant_steps,
                                                 coupling_network=coupling_network,
                                                 num_context=dequant_context,
                                                 num_blocks=coupling_blocks,
                                                 mid_channels=coupling_channels,
                                                 depth=coupling_depth,
                                                 dropout=coupling_dropout,
                                                 gated_conv=coupling_gated_conv,
                                                 num_mixtures=coupling_mixtures)
            transforms.append(VariationalDequantization(encoder=dequantize_flow, num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        for scale in range(num_scales):

            # squeeze to exchange height and width for more channels
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4,
                             current_shape[1] // 2,
                             current_shape[2] // 2)

            # Dimension preserving components
            for step in range(num_steps):
                if actnorm: transforms.append(ActNormBijection2d(current_shape[0]))
                transforms.append(Conv1x1(current_shape[0]))
                if coupling_network == "conv":
                    transforms.append(
                        Coupling(in_channels=current_shape[0],
                                 num_blocks=coupling_blocks,
                                 mid_channels=coupling_channels,
                                 depth=coupling_depth,
                                 dropout=coupling_dropout,
                                 gated_conv=coupling_gated_conv,
                                 coupling_network=coupling_network))
                else:
                    transforms.append(
                        MixtureCoupling(in_channels=current_shape[0],
                                        mid_channels=coupling_channels,
                                        num_mixtures=coupling_mixtures,
                                        num_blocks=coupling_blocks,
                                        dropout=coupling_dropout))
 
            # Non-dimension preserving flows: reduce the dimensionality of data by 2 (channel-wise)
            if actnorm: transforms.append(ActNormBijection2d(current_shape[0]))
            assert current_shape[0] % 2 == 0, f"Current shape {current_shape[1]}x{current_shape[2]} must be divisible by two"
            latent_size = (current_shape[0] * current_shape[1] * current_shape[2]) // 2
            
            encoder = ConditionalNormal(
                ConvEncoderNet(in_channels=current_shape[0],
                               out_channels=latent_size,
                               mid_channels=vae_hidden_units,
                               max_pool=True, batch_norm=True),
                split_dim=1)
            decoder = ConditionalNormal(
                ConvDecoderNet(in_channels=latent_size,
                               out_shape=(current_shape[0] * 2, current_shape[1], current_shape[2]),
                               mid_channels=list(reversed(vae_hidden_units)),
                               batch_norm=True,
                               in_lambda=lambda x: x.view(x.shape[0], x.shape[1], 1, 1)),
                split_dim=1)
            
            transforms.append(VAE(encoder=encoder, decoder=decoder))
            current_shape = (current_shape[0] // 2,
                             current_shape[1],
                             current_shape[2])

            if scale < num_scales - 1:
                # reshape latent sample to have height and width
                transforms.append(Reshape(input_shape=(latent_size,), output_shape=current_shape))
            
        # Base distribution for dimension preserving portion of flow
        if base_distribution == "n":
            base_dist = StandardNormal((latent_size,))
        elif base_distribution == "c":
            base_dist = ConvNormal2d((latent_size,))
        elif base_distribution == "u":
            base_dist = StandardUniform((latent_size,))
        else:
            raise ValueError("Base distribution must be one of n=Normal, u=Uniform, or c=ConvNormal")

        # for reference save the shape output by the bijective flow
        self.latent_size = latent_size
        self.flow_shape = current_shape

        super(MultilevelCompressiveFlow, self).__init__(base_dist=[None, base_dist], transforms=transforms)
예제 #8
0
    def __init__(self, data_shape, cond_shape, num_bits, num_scales, num_steps,
                 actnorm, pooling, dequant, dequant_steps, dequant_context,
                 densenet_blocks, densenet_channels, densenet_depth,
                 densenet_growth, dropout, gated_conv, init_context):

        transforms = []
        current_shape = data_shape
        if dequant == 'uniform':
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                num_context=dequant_context,
                num_blocks=densenet_blocks,
                mid_channels=densenet_channels,
                depth=densenet_depth,
                dropout=dropout,
                gated_conv=gated_conv)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeeze
        transforms.append(Squeeze2d())
        current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                         current_shape[2] // 2)

        # Pooling flows
        for scale in range(num_scales):
            for step in range(num_steps):
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))
                transforms.extend([
                    Conv1x1(num_channels=current_shape[0]),
                    #ConditionalConv1x1(cond_shape=cond_shape, num_channels=current_shape[0]),  # for conditional images!
                    ConditionalCoupling(in_channels=current_shape[0],
                                        num_context=cond_shape[0],
                                        num_blocks=densenet_blocks,
                                        mid_channels=densenet_channels,
                                        depth=densenet_depth,
                                        dropout=dropout,
                                        gated_conv=gated_conv)
                ])

            if scale < num_scales - 1:
                if pooling == 'none':
                    transforms.append(Squeeze2d())
                    current_shape = (current_shape[0] * 4,
                                     current_shape[1] // 2,
                                     current_shape[2] // 2)
                else:
                    if pooling == 'slice':
                        noise_shape = (current_shape[0] * 2,
                                       current_shape[1] // 2,
                                       current_shape[2] // 2)
                        transforms.append(Squeeze2d())
                        transforms.append(
                            Slice(StandardNormal(noise_shape),
                                  num_keep=current_shape[0] * 2,
                                  dim=1))
                        current_shape = (current_shape[0] * 2,
                                         current_shape[1] // 2,
                                         current_shape[2] // 2)
                    elif pooling == 'max':
                        noise_shape = (current_shape[0] * 3,
                                       current_shape[1] // 2,
                                       current_shape[2] // 2)
                        decoder = StandardHalfNormal(noise_shape)
                        transforms.append(
                            SimpleMaxPoolSurjection2d(decoder=decoder))
                        current_shape = (current_shape[0],
                                         current_shape[1] // 2,
                                         current_shape[2] // 2)

                    else:
                        raise ValueError(
                            "pooling argument must be either slice, max or none"
                        )

            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        # for reference save the shape output by the bijective flow
        self.flow_shape = current_shape

        super(CondPoolFlow,
              self).__init__(base_dist=ConvNormal2d(current_shape),
                             transforms=transforms)
예제 #9
0
    def __init__(self,
                 data_shape,
                 cond_shape,
                 num_bits,
                 num_scales,
                 num_steps,
                 actnorm,
                 conditional_channels,
                 lowres_encoder_channels,
                 lowres_encoder_blocks,
                 lowres_encoder_depth,
                 lowres_upsampler_channels,
                 pooling,
                 compression_ratio,
                 coupling_network,
                 coupling_blocks,
                 coupling_channels,
                 coupling_dropout=0.0,
                 coupling_gated_conv=None,
                 coupling_depth=None,
                 coupling_mixtures=None,
                 dequant="flow",
                 dequant_steps=4,
                 dequant_context=32,
                 dequant_blocks=2,
                 augment_steps=4,
                 augment_context=32,
                 augment_blocks=2,
                 augment_size=None,
                 checkerboard_scales=[],
                 tuple_flip=True):

        if len(compression_ratio) == 1 and num_scales > 1:
            compression_ratio = [compression_ratio[0]] * (num_scales - 1)
        assert all([
            compression_ratio[s] >= 0.0 and compression_ratio[s] < 1.0
            for s in range(num_scales - 1)
        ])

        # initialize context. Only upsample context in ContextInit if latent shape doesn't change during the flow.
        context_init = ContextInit(num_bits=num_bits,
                                   in_channels=cond_shape[0],
                                   out_channels=lowres_encoder_channels,
                                   mid_channels=lowres_encoder_channels,
                                   num_blocks=lowres_encoder_blocks,
                                   depth=lowres_encoder_depth,
                                   dropout=coupling_dropout)

        transforms = []
        current_shape = data_shape
        if dequant == 'uniform':
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                coupling_network=coupling_network,
                num_context=dequant_context,
                num_blocks=dequant_blocks,
                mid_channels=coupling_channels,
                depth=coupling_depth,
                dropout=0.0,
                gated_conv=False,
                num_mixtures=coupling_mixtures,
                checkerboard=True,
                tuple_flip=tuple_flip)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeezing
        if current_shape[1] >= 128 and current_shape[2] >= 128:
            # H x W -> 64 x 64
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if current_shape[1] >= 64 and current_shape[2] >= 64:
            # H x W -> 32 x 32
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if 0 not in checkerboard_scales or (current_shape[1] > 32
                                            and current_shape[2] > 32):
            # Only go to 16 x 16 if not doing checkerboard splits first
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        # add in augmentation channels if desired
        if augment_size is not None and augment_size > 0:
            #transforms.append(Augment(StandardUniform((augment_size, current_shape[1], current_shape[2])), x_size=current_shape[0]))
            #transforms.append(Augment(StandardNormal((augment_size, current_shape[1], current_shape[2])), x_size=current_shape[0]))
            augment_flow = AugmentFlow(data_shape=current_shape,
                                       augment_size=augment_size,
                                       num_steps=augment_steps,
                                       coupling_network=coupling_network,
                                       mid_channels=coupling_channels,
                                       num_context=augment_context,
                                       num_mixtures=coupling_mixtures,
                                       num_blocks=augment_blocks,
                                       dropout=0.0,
                                       checkerboard=True,
                                       tuple_flip=tuple_flip)
            transforms.append(
                Augment(encoder=augment_flow, x_size=current_shape[0]))
            current_shape = (current_shape[0] + augment_size, current_shape[1],
                             current_shape[2])

        for scale in range(num_scales):

            # First and Third scales use checkerboard split pattern
            checkerboard = scale in checkerboard_scales
            context_out_channels = min(current_shape[0], coupling_channels)
            context_out_shape = (context_out_channels, current_shape[1],
                                 current_shape[2] //
                                 2) if checkerboard else (context_out_channels,
                                                          current_shape[1],
                                                          current_shape[2])

            # reshape the context to the current size for all flow steps at this scale
            context_upsampler_net = UpsamplerNet(
                in_channels=lowres_encoder_channels,
                out_shape=context_out_shape,
                mid_channels=lowres_upsampler_channels)
            transforms.append(
                ContextUpsampler(context_net=context_upsampler_net,
                                 direction='forward'))

            for step in range(num_steps):

                flip = (step % 2 == 0) if tuple_flip else False

                if len(conditional_channels) == 0:
                    if actnorm:
                        transforms.append(ActNormBijection2d(current_shape[0]))
                    transforms.append(Conv1x1(current_shape[0]))
                else:
                    if actnorm:
                        transforms.append(
                            ConditionalActNormBijection2d(
                                cond_shape=current_shape,
                                out_channels=current_shape[0],
                                mid_channels=conditional_channels))
                    transforms.append(
                        ConditionalConv1x1(cond_shape=current_shape,
                                           out_channels=current_shape[0],
                                           mid_channels=conditional_channels,
                                           slogdet_cpu=True))

                if coupling_network in ["conv", "densenet"]:
                    transforms.append(
                        SRCoupling(x_size=context_out_shape,
                                   y_size=current_shape,
                                   mid_channels=coupling_channels,
                                   depth=coupling_depth,
                                   num_blocks=coupling_blocks,
                                   dropout=coupling_dropout,
                                   gated_conv=coupling_gated_conv,
                                   coupling_network=coupling_network,
                                   checkerboard=checkerboard,
                                   flip=flip))

                elif coupling_network == "transformer":
                    transforms.append(
                        SRMixtureCoupling(x_size=context_out_shape,
                                          y_size=current_shape,
                                          mid_channels=coupling_channels,
                                          dropout=coupling_dropout,
                                          num_blocks=coupling_blocks,
                                          num_mixtures=coupling_mixtures,
                                          checkerboard=checkerboard,
                                          flip=flip))

            # Upsample context (for the previous flows, only if moving in the inverse direction)
            transforms.append(
                ContextUpsampler(context_net=context_upsampler_net,
                                 direction='inverse'))

            if scale < num_scales - 1:
                if pooling == 'none' or compression_ratio[scale] == 0.0:
                    # fully bijective flow with multi-scale architecture
                    transforms.append(Squeeze2d())
                    current_shape = (current_shape[0] * 4,
                                     current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'slice':
                    # slice some of the dimensions (channel-wise) out from further flow steps
                    unsliced_channels = int(
                        max(
                            1, 4 * current_shape[0] *
                            (1.0 - compression_ratio[scale])))
                    sliced_channels = int(4 * current_shape[0] -
                                          unsliced_channels)
                    noise_shape = (sliced_channels, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    transforms.append(Squeeze2d())
                    transforms.append(
                        Slice(StandardNormal(noise_shape),
                              num_keep=unsliced_channels,
                              dim=1))
                    current_shape = (unsliced_channels, current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'max':
                    # max pooling to compress dimensions spatially, h//2 and w//2
                    noise_shape = (current_shape[0] * 3, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    decoder = StandardHalfNormal(noise_shape)
                    transforms.append(
                        SimpleMaxPoolSurjection2d(decoder=decoder))
                    current_shape = (current_shape[0], current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == "mvae":
                    # Compressive flow: reduce the dimensionality of data by 2 (channel-wise)
                    compressed_channels = max(
                        1,
                        int(current_shape[0] *
                            (1.0 - compression_ratio[scale])))
                    latent_size = compressed_channels * current_shape[
                        1] * current_shape[2]
                    vae_channels = [
                        current_shape[0] * 2, current_shape[0] * 4,
                        current_shape[0] * 8
                    ]
                    encoder = ConditionalNormal(ConvEncoderNet(
                        in_channels=current_shape[0],
                        out_channels=latent_size,
                        mid_channels=vae_channels,
                        max_pool=True,
                        batch_norm=True),
                                                split_dim=1)
                    decoder = ConditionalNormal(ConvDecoderNet(
                        in_channels=latent_size,
                        out_shape=(current_shape[0] * 2, current_shape[1],
                                   current_shape[2]),
                        mid_channels=list(reversed(vae_channels)),
                        batch_norm=True,
                        in_lambda=lambda x: x.view(x.shape[0], x.shape[1], 1, 1
                                                   )),
                                                split_dim=1)
                    transforms.append(VAE(encoder=encoder, decoder=decoder))
                    transforms.append(
                        Reshape(input_shape=(latent_size, ),
                                output_shape=(compressed_channels,
                                              current_shape[1],
                                              current_shape[2])))

                    # after reducing channels with mvae, squeeze to reshape latent space before another sequence of flows
                    transforms.append(Squeeze2d())
                    current_shape = (
                        compressed_channels * 4,  # current_shape[0] * 4
                        current_shape[1] // 2,
                        current_shape[2] // 2)

                else:
                    raise ValueError(
                        "pooling argument must be either mvae, slice, max, or none"
                    )

            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        # for reference save the shape output by the bijective flow
        self.latent_size = current_shape[0] * current_shape[1] * current_shape[
            2]
        self.flow_shape = current_shape

        super(SRPoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape),
                                         transforms=transforms,
                                         context_init=context_init)
예제 #10
0
    def __init__(self,
                 data_shape,
                 num_bits,
                 base_distributions,
                 num_scales,
                 num_steps,
                 actnorm,
                 vae_hidden_units,
                 latent_size,
                 vae_activation,
                 coupling_network,
                 dequant,
                 dequant_steps,
                 dequant_context,
                 coupling_blocks,
                 coupling_channels,
                 coupling_dropout,
                 coupling_growth=None,
                 coupling_gated_conv=None,
                 coupling_depth=None,
                 coupling_mixtures=None):

        transforms = []
        current_shape = data_shape
        if num_steps == 0: num_scales = 0

        if dequant == 'uniform' or num_steps == 0 or num_scales == 0:
            # no bijective flows defaults to only using uniform dequantization
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                coupling_network=coupling_network,
                num_context=dequant_context,
                num_blocks=coupling_blocks,
                mid_channels=coupling_channels,
                depth=coupling_depth,
                growth=coupling_growth,
                dropout=coupling_dropout,
                gated_conv=coupling_gated_conv,
                num_mixtures=coupling_mixtures)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeeze
        transforms.append(Squeeze2d())
        current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                         current_shape[2] // 2)

        # Dimension preserving flows
        for scale in range(num_scales):
            for step in range(num_steps):
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))
                transforms.append(Conv1x1(current_shape[0]))
                if coupling_network in ["conv", "densenet"]:
                    transforms.append(
                        Coupling(in_channels=current_shape[0],
                                 num_blocks=coupling_blocks,
                                 mid_channels=coupling_channels,
                                 depth=coupling_depth,
                                 growth=coupling_growth,
                                 dropout=coupling_dropout,
                                 gated_conv=coupling_gated_conv,
                                 coupling_network=coupling_network))
                else:
                    transforms.append(
                        MixtureCoupling(in_channels=current_shape[0],
                                        mid_channels=coupling_channels,
                                        num_mixtures=coupling_mixtures,
                                        num_blocks=coupling_blocks,
                                        dropout=coupling_dropout))

            if scale < num_scales - 1:
                transforms.append(Squeeze2d())
                current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                                 current_shape[2] // 2)
            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        # Base distribution for dimension preserving portion of flow
        if len(base_distributions) > 1:
            if base_distributions[0] == "n":
                base0 = StandardNormal(current_shape)
            elif base_distributions[0] == "c":
                base0 = ConvNormal2d(current_shape)
            elif base_distributions[0] == "u":
                base0 = StandardUniform(current_shape)
            else:
                raise ValueError(
                    "Base distribution must be one of n=Noraml, u=Uniform, or c=ConvNormal"
                )
        else:
            base0 = None

        # for reference save the shape output by the bijective flow
        self.flow_shape = current_shape

        # Non-dimension preserving flows
        flat_dim = current_shape[0] * current_shape[1] * current_shape[2]
        encoder = ConditionalNormal(
            MLP(flat_dim,
                2 * latent_size,
                hidden_units=vae_hidden_units,
                activation=vae_activation,
                in_lambda=lambda x: x.view(x.shape[0], flat_dim)))
        decoder = ConditionalNormal(MLP(
            latent_size,
            2 * flat_dim,
            hidden_units=list(reversed(vae_hidden_units)),
            activation=vae_activation,
            out_lambda=lambda x: x.view(x.shape[0], current_shape[0] * 2,
                                        current_shape[1], current_shape[2])),
                                    split_dim=1)

        transforms.append(VAE(encoder=encoder, decoder=decoder))

        # Base distribution for non-dimension preserving portion of flow
        #self.latent_size = latent_size
        if base_distributions[-1] == "n":
            base1 = StandardNormal((latent_size, ))
        elif base_distributions[-1] == "c":
            base1 = ConvNormal2d((latent_size, ))
        elif base_distributions[-1] == "u":
            base1 = StandardUniform((latent_size, ))
        else:
            raise ValueError(
                "Base distribution must be one of n=Noraml, u=Uniform, or c=ConvNormal"
            )

        super(VAECompressiveFlow, self).__init__(base_dist=[base0, base1],
                                                 transforms=transforms)
예제 #11
0
    def __init__(self, data_shape, num_bits, num_scales, num_steps, actnorm,
                 pooling, dequant, dequant_steps, dequant_context,
                 densenet_blocks, densenet_channels, densenet_depth,
                 densenet_growth, dropout, gated_conv):

        transforms = []
        current_shape = data_shape
        if dequant == 'uniform':
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                num_context=dequant_context,
                num_blocks=densenet_blocks,
                mid_channels=densenet_channels,
                depth=densenet_depth,
                growth=densenet_growth,
                dropout=dropout,
                gated_conv=gated_conv)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeeze
        transforms.append(Squeeze2d())
        current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                         current_shape[2] // 2)

        # Pooling flows
        for scale in range(num_scales):
            for step in range(num_steps):
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))
                transforms.extend([
                    Conv1x1(current_shape[0]),
                    Coupling(in_channels=current_shape[0],
                             num_blocks=densenet_blocks,
                             mid_channels=densenet_channels,
                             depth=densenet_depth,
                             growth=densenet_growth,
                             dropout=dropout,
                             gated_conv=gated_conv)
                ])

            if scale < num_scales - 1:
                noise_shape = (current_shape[0] * 3, current_shape[1] // 2,
                               current_shape[2] // 2)
                if pooling == 'none':
                    transforms.append(Squeeze2d())
                    transforms.append(
                        Slice(StandardNormal(noise_shape),
                              num_keep=current_shape[0],
                              dim=1))
                elif pooling == 'max':
                    decoder = StandardHalfNormal(noise_shape)
                    transforms.append(
                        SimpleMaxPoolSurjection2d(decoder=decoder))
                current_shape = (current_shape[0], current_shape[1] // 2,
                                 current_shape[2] // 2)
            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        super(PoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape),
                                       transforms=transforms)
예제 #12
0
    def __init__(self,
                 data_shape,
                 num_bits,
                 num_scales,
                 num_steps,
                 actnorm,
                 pooling,
                 compression_ratio,
                 coupling_network,
                 coupling_blocks,
                 coupling_channels,
                 coupling_dropout=0.0,
                 coupling_gated_conv=None,
                 coupling_depth=None,
                 coupling_mixtures=None,
                 dequant="flow",
                 dequant_steps=4,
                 dequant_context=32,
                 dequant_blocks=2,
                 augment_steps=4,
                 augment_context=32,
                 augment_blocks=2,
                 augment_size=None,
                 checkerboard_scales=[],
                 tuple_flip=True):

        if len(compression_ratio) == 1 and num_scales > 1:
            compression_ratio = [compression_ratio[0]] * (num_scales - 1)
        assert all([
            compression_ratio[s] >= 0 and compression_ratio[s] < 1
            for s in range(num_scales - 1)
        ])

        transforms = []
        current_shape = data_shape
        if dequant == 'uniform':
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                coupling_network=coupling_network,
                num_context=dequant_context,
                num_blocks=dequant_blocks,
                mid_channels=coupling_channels,
                depth=coupling_depth,
                dropout=0.0,
                gated_conv=False,
                num_mixtures=coupling_mixtures,
                checkerboard=True,
                tuple_flip=tuple_flip)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeezing
        if current_shape[1] >= 128 and current_shape[2] >= 128:
            # H x W -> 64 x 64
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if current_shape[1] >= 64 and current_shape[2] >= 64:
            # H x W -> 32 x 32
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if 0 not in checkerboard_scales or (current_shape[1] > 32
                                            and current_shape[2] > 32):
            # Only go to 16 x 16 if not doing checkerboard splits first
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        # add in augmentation channels if desired
        if augment_size is not None and augment_size > 0:
            augment_flow = AugmentFlow(data_shape=current_shape,
                                       augment_size=augment_size,
                                       num_steps=augment_steps,
                                       coupling_network=coupling_network,
                                       mid_channels=coupling_channels,
                                       num_context=augment_context,
                                       num_mixtures=coupling_mixtures,
                                       num_blocks=augment_blocks,
                                       dropout=0.0,
                                       checkerboard=True,
                                       tuple_flip=tuple_flip)
            transforms.append(
                Augment(encoder=augment_flow, x_size=current_shape[0]))
            current_shape = (current_shape[0] + augment_size, current_shape[1],
                             current_shape[2])

        for scale in range(num_scales):
            checkerboard = scale in checkerboard_scales

            for step in range(num_steps):
                flip = (step % 2 == 0) if tuple_flip else False

                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))
                transforms.append(Conv1x1(current_shape[0]))

                if coupling_network == "conv":
                    transforms.append(
                        Coupling(in_channels=current_shape[0],
                                 num_blocks=coupling_blocks,
                                 mid_channels=coupling_channels,
                                 depth=coupling_depth,
                                 dropout=coupling_dropout,
                                 gated_conv=coupling_gated_conv,
                                 coupling_network=coupling_network,
                                 checkerboard=checkerboard,
                                 flip=flip))
                else:
                    transforms.append(
                        MixtureCoupling(in_channels=current_shape[0],
                                        mid_channels=coupling_channels,
                                        num_mixtures=coupling_mixtures,
                                        num_blocks=coupling_blocks,
                                        dropout=coupling_dropout,
                                        checkerboard=checkerboard,
                                        flip=flip))

            if scale < num_scales - 1:
                if pooling in ['bijective', 'none'
                               ] or compression_ratio[scale] == 0.0:
                    transforms.append(Squeeze2d())
                    current_shape = (current_shape[0] * 4,
                                     current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'slice':
                    # slice some of the dimensions (channel-wise) out from further flow steps
                    unsliced_channels = int(
                        max(1, 4 * current_shape[0] *
                            (1.0 - sliced_ratio[scale])))
                    sliced_channels = int(4 * current_shape[0] -
                                          unsliced_channels)
                    noise_shape = (sliced_channels, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    transforms.append(Squeeze2d())
                    transforms.append(
                        Slice(StandardNormal(noise_shape),
                              num_keep=unsliced_channels,
                              dim=1))
                    current_shape = (unsliced_channels, current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'max':
                    noise_shape = (current_shape[0] * 3, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    decoder = StandardHalfNormal(noise_shape)
                    transforms.append(
                        SimpleMaxPoolSurjection2d(decoder=decoder))
                    current_shape = (current_shape[0], current_shape[1] // 2,
                                     current_shape[2] // 2)
                else:
                    raise ValueError(
                        f"Pooling argument must be either slice, max or none, not: {pooling}"
                    )

            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        # for reference save the shape output by the bijective flow
        self.flow_shape = current_shape
        self.latent_size = current_shape[0] * current_shape[1] * current_shape[
            2]

        super(PoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape),
                                       transforms=transforms)