예제 #1
0
def cross_validation(x, y, folds_number):
    avg = 0
    precision = 0
    recall = 0
    fold_size = int(y.shape[0] / folds_number)

    for i in range(folds_number):
        train_x = np.concatenate((x[(i - 1) * fold_size:i * fold_size],
                                  x[(i + 1) * fold_size:(i + 2) * fold_size]))
        train_y = np.concatenate((y[(i - 1) * fold_size:i * fold_size],
                                  y[(i + 1) * fold_size:(i + 2) * fold_size]))

        test_x = x[i * fold_size:(i + 1) * fold_size]
        test_y = y[i * fold_size:(i + 1) * fold_size]

        clf = SVM()
        clf.fit(train_x, train_y)
        y_pred = clf.predict(test_x)
        avg += np.average(y_pred == test_y)
        precision += np.sum(np.bitwise_and(y_pred == 1, test_y
                                           == 1)) / np.sum(y_pred == 1)
        recall += np.sum(np.bitwise_and(y_pred == 1, test_y
                                        == 1)) / np.sum(test_y == 1)

    return avg / folds_number * 100, precision / folds_number, recall / folds_number
예제 #2
0
파일: svm-test.py 프로젝트: sircelj/ozp
    def test_blob_coefficients(self):
        X, y = generate_data("blobs")
        svm = SVM(C=1, rate=0.001, epochs=5000, kernel="linear")
        svm.fit(X, y)
        ref = np.array([3.8, -1.6, -1.0])

        np.testing.assert_array_almost_equal(ref, svm.get_weights(), decimal=1)
예제 #3
0
    def otimizar(self):
        # Definindo estado inicial da otimização
        estado_inicial = [
            2**np.random.uniform(low=-5.0, high=15.0 + 1),
            2**np.random.uniform(low=-15.0, high=3.0 + 1),
            np.random.uniform(low=0.05, high=1.0)
        ]

        # Instanciando otimizador
        sp = SVMProblem(estado_inicial, self.X_treinamento, self.Y_treinamento)
        sp.steps = self.num_passos

        # Otimizando
        self.iniciar_tempo()
        resp, mae = sp.anneal()
        self.finalizar_tempo()

        # Extraindo os melhores hiperparametros
        C = resp[0]
        gamma = resp[1]
        epsilon = resp[2]

        # Treinando SVM final com os parâmetros encontrados
        self.svm = SVM(gamma, C, epsilon)
        self.svm.treinar(self.X_treinamento, self.Y_treinamento)
        self.svm.testar(self.X_teste, self.Y_teste)
예제 #4
0
def main():
    # train_x, train_y, test_x, test_y = load_matrix2("data/data.csv", 1000, 1000, 49.1)
    train_x, train_y, test_x, test_y = load_matrix("data/sapirData.csv", 1100,
                                                   20)

    print('num of 1:', np.sum(test_y == 1))

    #clf = svm.SVC(kernel='linear', C=0.01)
    clf = SVM()

    clf.fit(train_x, train_y)
    y_pred = clf.predict(test_x)
    res = np.average(y_pred == test_y) * 100

    print('simple accurate: {:.2f}%'.format(res))
    print('simple precision: {:.2f}'.format(
        np.sum(np.bitwise_and(y_pred == 1, test_y == 1)) /
        np.sum(y_pred == 1)))
    print('simple recall: {:.2f}'.format(
        np.sum(np.bitwise_and(y_pred == 1, test_y == 1)) /
        np.sum(test_y == 1)))

    accurate, precision, recall = cross_validation(train_x, train_y, 5)
    print(
        'cross validation accurate: {:.2f}%\ncross validation precision: {:.2f}\ncross validation recall: {:.2f}'
        .format(accurate, precision, recall))
예제 #5
0
def Get_svm_model(parameter, X, y):
    svm = SVM()
    loss_histroy = svm.Train(
        X, y, parameter[1], 1, parameter[0], 200, 1500, True)
    VisualizeLoss(loss_histroy)
    input("Enter any key to predict...")
    return svm
예제 #6
0
파일: main.py 프로젝트: AngeloK/cs584-hws
def nonlinearSVM():
    data = pd.read_csv("dataset/fourclass.csv")
    X = data[["x1", "x2"]].as_matrix()
    m, n = X.shape
    y = data["y"].as_matrix()
    h = 0.02

    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))

    fig_idx = 1
    for d in [10, 20, 30,40, 50, 60]:
        s = SVM(kernel="polynomial", degree=1)
        # s = svm.SVC(kernel='poly', degree=d, C=1.0).fit(X, y)
        # s = svm.SVC(kernel='rbf', gamma=0.7, C=1.0).fit(X, y)
        s.fit(X, y)
        Z = s.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # plt.subplot(3,2, fig_idx)
        # plt.title("Degree=1" %d)
        plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
        plt.scatter(X[:, 0], X[:, 1], c=y)
        fig_idx += 1
        break
    plt.show()
예제 #7
0
    def otimizar(self):
        # Definindo os parâmetros a serem utilizados
        parametros = {
            'C': hp.uniform('C', -5, 15),
            'gamma': hp.uniform('gamma', -15, 3),
            'epsilon': hp.uniform('epsilon', 0.05, 1.0)
        }

        # Executando otimização dos parâmetros
        self.iniciar_tempo()
        resp = fmin(self.func_obj_bayesiana,
                    parametros,
                    algo=tpe.suggest,
                    max_evals=self.num_chamadas)
        self.finalizar_tempo()

        # Extraindo os melhores hiperparametros
        C = 2.0**resp['C']
        gamma = 2.0**resp['gamma']
        epsilon = resp['epsilon']

        # Treinando SVM final com os parâmetros encontrados
        self.svm = SVM(gamma, C, epsilon)
        self.svm.treinar(self.X_treinamento, self.Y_treinamento)
        self.svm.testar(self.X_teste, self.Y_teste)
예제 #8
0
    def fit(self, X: np.ndarray, y: np.ndarray):
        # check if labels are integers
        labels = np.unique(y)
        for label in labels:
            if not label.is_integer():
                raise ValueError(str(label) + " is not an integer value label")
        self.labels = np.array(labels, dtype=int)

        # re-arrange training set per labels in a dictionary
        X_arranged_list = collections.defaultdict(list)
        for index, x in enumerate(X):
            X_arranged_list[y[index]].append(x)

        # convert to numpy array the previous dictionary
        X_arranged_numpy = {}
        for index in range(len(self.labels)):
            X_arranged_numpy[index] = np.array(X_arranged_list[index])

        for i in range(0, self.labels.shape[0] - 1):
            for j in range(i + 1, self.labels.shape[0]):
                current_X = np.concatenate((X_arranged_numpy[i], X_arranged_numpy[j]))
                current_y = np.concatenate((- np.ones((len(X_arranged_numpy[i]),), dtype=int),
                                           np.ones(len((X_arranged_numpy[j]),), dtype=int)))
                svm = SVM(kernel=self.kernel, gamma=self.gamma, deg=self.deg, r=self.r, C=self.C)
                svm.fit(current_X, current_y, verbosity=0)
                for sv in svm.sv_X:
                    self.support_vectors.add(tuple(sv.tolist()))
                svm_tuple = (svm, self.labels[i], self.labels[j])
                self.SVMs.append(svm_tuple)
        print('{0:d} support vectors found out of {1:d} data points'.format(len(self.support_vectors), len(X)))
예제 #9
0
    def fit(self, X, y):
        n_samples, n_features = np.shape(X)

        # Initialize weights to 1/N
        w = np.full(n_samples, (1 / n_samples))

        self.clfs = []
        self.alphas = []

        # Create classifiers
        for _ in range(self.n_clf):
            clf = SVM(rbf_kernel, 1.5)

            x_train, y_train = self.weighted_selection(X, y, w, 1)
            clf.fit(x_train, y_train)
            predictions = clf.predict(X)
            error = 1 - accuracy_score(predictions, y)
            if(error > 0.5):
                predictions *= -1
            
            # Calculate alpha
            alpha = 0.5 * math.log((1.0 - error) / (error + 1e-10))
            w *= np.exp(-alpha * y * predictions)
            # Normalize weights
            w /= np.sum(w)

            # Save classifier and alpha
            self.clfs.append(clf)
            self.alphas.append(alpha)
예제 #10
0
def get_svm_model(parameter, X, y):
    svm = SVM()
    loss_history = svm.train(X, y, parameter[1], 1, parameter[0], 200, 1500,
                             True)
    VisualizeLoss(loss_history)
    input('Enter any key to predict...')
    return svm
예제 #11
0
파일: views.py 프로젝트: r-dc/H4H_2015
def analyze():
    def verify_structure(obj):
        if not obj:
            return False
        elif ("frames" not in obj) or ("username" not in obj):
            return False
        return True

    if not verify_structure(request.get_json()):
        print "verify structure"
        abort(401)

    user = User.query.filter_by(username=request.get_json()["username"]).first()

    if not user:
        abort(401)

    incidents = user.incidents

    machine = SVM(user.username, event_list_flatten(incidents), event_list_result_flatten(incidents))

    event_list = [0.0] * 75

    frames = request.get_json()["frames"]
    for each in sorted(frames, key=lambda frame: frame["batch_order"]):
        batch_order = each["batch_order"]
        event_list[batch_order * 3] = each["accel_x"]
        event_list[batch_order * 3 + 1] = each["accel_y"]
        event_list[batch_order * 3 + 2] = each["accel_z"]

    machine.classify(event_list)
    guess = bool(machine.labeled_new_data())

    return json.dumps({"guess": guess, "content": request.get_json()}), 200
예제 #12
0
    def otimizar(self):
        # Definindo os parâmetros a serem utilizados
        parametros = {
            'C': loguniform.rvs(2**-5, 2**15, size=self.tamanho_grid),
            'gamma': loguniform.rvs(2**-15, 2**3, size=self.tamanho_grid),
            'epsilon': uniform.rvs(0.0, 1, size=self.tamanho_grid)
        }

        cv_ = ShuffleSplit(n_splits=1, test_size=0.1, train_size=0.9)

        # Executando otimização dos parâmetros
        self.iniciar_tempo()
        grid = GridSearchCV(estimator=SVR(kernel='rbf'),
                            param_grid=parametros,
                            scoring="neg_mean_absolute_error",
                            cv=cv_,
                            n_jobs=-1)
        grid.fit(self.X_treinamento, self.Y_treinamento)
        self.finalizar_tempo()

        # extraindo os melhores hiperparametros
        C = grid.best_params_['C']
        gamma = grid.best_params_['gamma']
        epsilon = grid.best_params_['epsilon']

        # Treinando SVM final com os parâmetros encontrados
        self.svm = SVM(gamma, C, epsilon)
        self.svm.treinar(self.X_treinamento, self.Y_treinamento)
        self.svm.testar(self.X_teste, self.Y_teste)
예제 #13
0
def computeSVMCrossValidation(args, dict_algorithms):
    if (args.debug):
        print("Running svm...", end='')
    model = SVM(args)
    dict_algorithms["svm"] = model.computeCrossValidation()
    if (args.debug):
        print("ok!")
예제 #14
0
    def svm_validate(data, kernel, svm_C, show_plot):
        plot = Plot()
        matrix_full = [[0, 0], [0, 0]]
        y_predict_arr = []

        for i in range(len(data)):
            data.updateTrainTest(i)
            trainDots, trainClass = data.getDotsByMode('train', True)
            testDots, testClass = data.getDotsByMode('test', True)

            clf = SVM(kernel=kernel, C=svm_C)
            clf.fit(trainDots, trainClass)
            y_predict = clf.predict(testDots)
            y_predict_arr.append(y_predict[0])

            if show_plot:
                plot.smv(trainDots[trainClass == 1], trainDots[trainClass == -1], clf, testDots[0], y_predict[0])

            matrix = get_metrics(y_predict, testClass)
            matrix_full[0][0] += matrix[0][0]
            matrix_full[0][1] += matrix[0][1]
            matrix_full[1][0] += matrix[1][0]
            matrix_full[1][1] += matrix[1][1]

        return y_predict_arr, get_f_measure(matrix_full), matrix_full
예제 #15
0
파일: main.py 프로젝트: AngeloK/cs584-hws
def linearSVM():
    iris = load_iris()
    X = iris.data[:100, :2]
    y = iris.target[:100]

    plt.scatter(X[:, 0], X[:, 1], c=y)
    plt.xlabel("Sepal Width")
    # plt.ylabel("Petal Length")
    plt.ylabel("Sepal Length")
    plt.title("Iris")
    x_min = int(min(X[:, 0])) - 1
    x_max = int(max(X[:, 0])) + 1
    s = SVM()
    s.fit(X, y)
    w, w_0, sp_idx = s.coef_

    X_sp = X[sp_idx]
    y_sp = iris.target[sp_idx]
    plt.scatter(X_sp[:, 0], X_sp[:, 1], c="red")

    x = np.array([i for i in range(x_min, x_max)])
    y = (-w_0 - x*w[0,0]) / w[1, 0]
    y_1 = (1-w_0 - x*w[0,0]) / w[1, 0]
    y_m_1 = (-1-w_0 - x*w[0,0]) / w[1, 0]
    plt.plot(x, y, label="Wx + W_0 = 0")
    plt.plot(x, y_1, label="Wx + W_0 = 1")
    plt.plot(x, y_m_1, label="Wx + W_0 = -1")
    plt.legend(loc=0, borderaxespad=0.)
    plt.show()
예제 #16
0
    def train(self):
        weights = np.full(self.n_samples, 1 / self.n_samples)

        for i in trange(self.iterations):

            count = 0
            error = np.inf

            while error > self.threshold:
                svm = SVM(self.train_data, self.test_data, self.train_labels,
                          self.test_labels, 'rbf', 1, 1, True)

                error = 0
                # print(self.n_samples)
                for i in range(self.n_samples):
                    if self.train_labels[:, i] != svm.predicted_labels[i]:
                        error = error + weights[i]

                if error > self.threshold:
                    print(error)
                    print("continuing...")
                    continue

                svm.alpha = 0.5 * np.log((1.0 - error) / (error + 1e-10))

                weights = np.exp(-1.0 * svm.alpha *
                                 self.train_labels.squeeze() *
                                 svm.predicted_labels.squeeze())
                weights = weights / np.sum(weights)

                self.classifiers.append(svm)
예제 #17
0
    def otimizar(self):
        # Definindo os parâmetros a serem utilizados
        parametros = {
            'C': loguniform(2**-5, 2**15),
            'gamma': loguniform(2**-15, 2**3),
            'epsilon': uniform(0.0, 1)
        }

        cv_ = ShuffleSplit(n_splits=1, test_size=0.1, train_size=0.9)

        # Executando otimização dos parâmetros
        self.iniciar_tempo()
        randomSCV = RandomizedSearchCV(SVR(kernel='rbf'), parametros, scoring="neg_mean_absolute_error", cv=cv_, n_iter=self.num_combinacoes, n_jobs=-1)
        randomSCV.fit(self.X_treinamento, self.Y_treinamento)
        self.finalizar_tempo()

        # Identify optimal hyperparameter values
        C = randomSCV.best_params_['C']
        gamma = randomSCV.best_params_['gamma']
        epsilon = randomSCV.best_params_['epsilon']

        # Treinando SVM final com os parâmetros encontrados
        self.svm = SVM(gamma, C, epsilon)
        self.svm.treinar(self.X_treinamento, self.Y_treinamento)
        self.svm.testar(self.X_teste, self.Y_teste)
예제 #18
0
def get_model_optimizer(args):
    model = SVM(c=args.c, penalty=args.penalty)
    if args.gpu >= 0:
        model.to_gpu()
    optimizer = optimizers.SGD(lr=args.lr)
    optimizer.setup(model)

    return model, optimizer
예제 #19
0
 def test_fit(self):
     s = SVM(C=None)
     s.fit(
         np.array([[1, 2], [1, 1], [2, 1.5], [7, 8], [8, 6.5], [8, 7.5],
                   [9, 7]]), np.array([-1, -1, -1, 1, 1, 1, 1]))
     np.testing.assert_allclose(s.w,
                                np.array([0.1967213, 0.16393444]),
                                rtol=1e-5)
     np.testing.assert_allclose(s.b, -1.6393436694251626, rtol=1e-5)
예제 #20
0
 def test_text_training(self):
     X, y = get_text_data("text-data")
     svm = SVM(C=1, rate=0.001, epochs=100, kernel="text")
     svm.fit(X, y)
     predicted = svm.predict(X)
     print(y)
     print(predicted)
     errors = np.sum(predicted - y)
     self.assertEqual(errors, 0)
예제 #21
0
파일: search_cg.py 프로젝트: yalog/misc
	def run(self):
		while True:
			try:
				cg = self.work_queue.get_nowait()
				svm = SVM(sys.argv[1])
				avg_acc = svm.cross_validate(cg[0],cg[1])
				self.result_queue.put((cg[0], cg[1], avg_acc))
			except Empty:
				return
예제 #22
0
    def func_objetivo(self, arg):
        C_ = 2 ** (-5 + arg[0] * 20)
        gamma_ = 2 ** (-15 + arg[1] * 18)
        epsilon_ = abs(arg[2])

        svm = SVM(gamma_, C_, epsilon_)
        svm.treinar(self.X_treinamento, self.Y_treinamento)

        return svm.mae_treinamento
예제 #23
0
    def func_obj_bayesiana(self, params):
        C_ = 2.0**params['C']
        gamma_ = 2.0**params['gamma']
        epsilon_ = params['epsilon']

        svm = SVM(gamma_, C_, epsilon_)
        svm.treinar(self.X_treinamento, self.Y_treinamento)

        return svm.mae_treinamento
예제 #24
0
    def func_obj_pso(self, params):
        C_ = 2.0**params[0]
        gamma_ = 2.0**params[1]
        epsilon_ = params[2]

        svm = SVM(gamma_, C_, epsilon_)
        svm.treinar(self.X_treinamento, self.Y_treinamento)

        return svm.mae_treinamento
예제 #25
0
    def _trainSvm(self, positiveLabel, negativeLabel, C = 2, toler = 0.0001):
        ''' '''
        assert self.dataFileName is not None
        assert positiveLabel < negativeLabel
        dataSet = DigitDataSet()
        dataSet.load(self.dataFileName).map(positiveLabel, negativeLabel)

        svm = SVM()
        svm.train(dataSet, C, toler)
        return svm
예제 #26
0
 def test_blob_prediction(self):
     X, y = generate_data("blobs")
     svm = SVM(C=1, rate=0.001, epochs=5000, kernel="linear")
     svm.fit(X, y)
     predicted = svm.predict(X)
     print(y)
     print(predicted)
     errors = np.sum(np.abs(predicted - y))
     print(errors)
     self.assertLess(errors, 8)
예제 #27
0
 def test_circle_prediction(self):
     X, y = generate_data("circle", n_samples=200)
     svm = SVM(C=1, rate=0.001, epochs=5000, kernel="rbf")
     svm.fit(X, y)
     predicted = svm.predict(X)
     print(y)
     print(predicted)
     errors = np.sum(np.abs(predicted - y))
     print(errors)
     self.assertLess(errors, 20)
예제 #28
0
def example(num_samples=10, num_features=2, grid_size=20, filename="svm.pdf"):
    samples = np.array(
        np.random.normal(size=num_samples * num_features).reshape(
            num_samples, num_features))
    labels = 2 * (samples.sum(axis=1) > 0) - 1.0
    data_dict = build_data_dict(samples, labels)
    svm = SVM(data=data_dict, kernel=Kernel.linear(), c=0.1)
    svm.fit()

    plot(svm, samples, labels, grid_size, filename)
예제 #29
0
def mnist_svm_test():

    # Create reader to load and save the training and test data
    reader = MNistReader()
    reader.load_training_data("./mnist-data/train-images.idx3-ubyte",
                              "./mnist-data/train-labels.idx1-ubyte")
    reader.load_test_data("./mnist-data/t10k-images.idx3-ubyte",
                          "./mnist-data/t10k-labels.idx1-ubyte")

    # Create SVM object
    svm = SVM()
    svm.isMnist()
    """

        # Train and predict for binary svm
        logging.info("Running SVM for binary classification")
        #svm.train(reader.X, reader.Y, reader.X_test, reader.Y_test)
        logging.info("Saving binary results")
        #svm.results.to_excel(writer_mnist, sheet_name='binary')

        # MULTI CLASS SVM

        # Train and predict for binary svm
        logging.info("Multi Class SVM\n")

        # Train and predict for multi-class data using the linear svm from liblinear implementation

        # Train for multi-class single run with these objects liblinear implementation
        #svm.train(reader.X, reader.multiY, reader.X_test, reader.multiYtest, binary=False)
        logging.info("Saving multiclass liblinear results")
        #svm.results.to_excel(writer_mnist, sheet_name='multiclass-liblinear')

        # Train for multi-class single run with these objects using the libsvm implementation
        #svm.train(reader.X, reader.multiY, reader.X_test, reader.multiYtest, binary=False, linear=False)
        logging.info("Saving multiclass libsvm results")
        #svm.results.to_excel(writer_mnist, sheet_name='multiclass-libsvm')

        # Train for multi-class single run with these objects liblinear implementation KPCA-LDA
        svm.train(reader.X, reader.multiY, reader.X_test, reader.multiYtest, binary=False, decomposition=True, once=True)
        logging.info("Saving multiclass liblinear results with kpca-lda")
        svm.results.to_excel(writer_mnist, sheet_name='multiclass-liblinear-kpca-lda')

        # Train for multi-class single run with these objects using the libsvm implementation KPCA-LDA
        svm.train(reader.X, reader.multiY, reader.X_test, reader.multiYtest, binary=False, linear=False, decomposition=True, once=True, fileprefix='mnist_')
        logging.info("Saving multiclass libsvm results with kpca-lda")
        svm.results.to_excel(writer_mnist, sheet_name='multiclass-libsvm-kpca-lda')

        # KNN and NC
        nearest(reader.X, reader.Y, reader.X_test, reader.Y_test,  reader.multiY, reader.multiYtest, writer_mnist, once=True, starcraft=False)
        """

    clustering(reader.X, reader.Y, reader.X_test, reader.Y_test)

    # Write all the results
    writer_mnist.save()
예제 #30
0
                def iterate(cself, svm, classes):
                    cself.mention('Training SVM...')
                    D = spdiag(classes)
                    qp.update_H(D * K * D)
                    qp.update_Aeq(classes.T)
                    alphas, obj = qp.solve(cself.verbose)

                    # Construct SVM from solution
                    svm = SVM(kernel=self.kernel, gamma=self.gamma, p=self.p,
                              verbose=self.verbose, sv_cutoff=self.sv_cutoff)
                    svm._X = bs.instances
                    svm._y = classes
                    svm._alphas = alphas
                    svm._objective = obj
                    svm._compute_separator(K)
                    svm._K = K

                    cself.mention('Recomputing classes...')
                    p_conf = svm._predictions[-bs.L_p:]
                    pos_classes = np.vstack([_update_classes(part)
                                             for part in
                                             partition(p_conf, bs.pos_groups)])
                    new_classes = np.vstack([-np.ones((bs.L_n, 1)), pos_classes])

                    class_changes = round(np.sum(np.abs(classes - new_classes) / 2))
                    cself.mention('Class Changes: %d' % class_changes)
                    if class_changes == 0:
                        return None, svm

                    return {'svm': svm, 'classes': new_classes}, None
예제 #31
0
def get_model_optimizer(args):
    model = SVM(c=args.c, penalty=args.penalty)
    if args.gpu >= 0:
        model.to_gpu()
    if args.penalty == 'L2':
        optimizer = optimizers.SGD(lr=args.lr)
    elif args.penalty == 'L1':
        optimizer = SGD(lr=args.lr)
    optimizer.setup(model)

    return model, optimizer
예제 #32
0
    def predict_dataset(set_num, p):
        svm = SVM(partial(p_spectral_kernel_proj,
                          p), 4**p, 1, data_sets[0][set_num],
                  data_sets[1][set_num], data_sets[2][set_num])
        svm.fit(1)

        result = svm.predict_Z()
        for i in range(len(result)):
            if result[i] == -1:
                result[i] = 0

        return np.array([result]).T
예제 #33
0
def main():
    data_path = './data'
    test_size_ratio = 0.1

    loader = Data_Loader(data_path)
    # unshuffled split of data to train and test
    [train_img, train_labels, test_img, test_labels
     ] = [np.array(x) for x in loader.load_all_data(test_size_ratio)]

    # call SVM(train_img, train_labels, test_img, test_labels) train, test
    svm_classifier = SVM(train_img, train_labels, test_img, test_labels)
    svm_classifier.train()
예제 #34
0
def test_rbf_svm():
    random_state = np.random.RandomState(0)
    n_samples = 100
    X = np.empty((n_samples, 2))
    X[:, 0] = np.linspace(0, 1, n_samples)
    X[:, 1] = random_state.randn(n_samples)
    y = np.sign(X[:, 1] - np.sin(2.0 * np.pi * np.sin(X[:, 0])))

    svm = SVM(kernel="rbf", C=1.0, gamma=1.0, random_state=random_state)
    svm.fit(X, y)
    y_pred = svm.predict(X)

    assert_greater(accuracy_score(y, y_pred), 0.9)
예제 #35
0
    def load(self):
        path = os.path.join('dump')
        assert os.path.exists(path)
        keySet = set()
        for each_path in os.listdir(path):
            key  = each_path.split('.')[0]
            keySet.add(key)

        for key in keySet:
            svm = SVM()
            svm.load(os.path.join('dump', key))
            self.svm_dict[key] = svm
        return self.svm_dict
예제 #36
0
def test_linear_svm():
    random_state = np.random.RandomState(0)
    X = random_state.randn(10, 2)
    b = -0.2
    w = np.array([0.5, -0.3])
    y = np.sign(b + np.dot(X, w))

    svm = SVM(kernel="linear", C=1.0, random_state=random_state)
    svm.fit(X, y)
    y_pred = svm.predict(X)
    assert_array_almost_equal(y, y_pred)
    assert_true(hasattr(svm, "coef_"))
    assert_true(hasattr(svm, "intercept_"))
예제 #37
0
def train_svm(dataset_loader, test_points, data_limit=0):
    input_, output = get_data_up_to_limit(dataset_loader, data_limit)

    input_, output = data_utils.construct_one_vs_all(input_, output, 0)
    (input_train, input_test, output_train,
     output_test) = data_utils.split(input_, output, test_points)
    #Run svm
    svm = SVM()
    svm.give_training_data(input_train, output_train)
    svm.train()

    svm.give_test_data(input_test, output_test)
    svm.analyze()
예제 #38
0
def test_linear_svm():
    random_state = np.random.RandomState(0)
    X = random_state.randn(10, 2)
    b = -0.2
    w = np.array([0.5, -0.3])
    y = np.sign(b + np.dot(X, w))

    svm = SVM(kernel="linear", C=1.0, random_state=random_state)
    svm.fit(X, y)
    y_pred = svm.predict(X)
    assert_array_almost_equal(y, y_pred)
    assert_true(hasattr(svm, "coef_"))
    assert_true(hasattr(svm, "intercept_"))
예제 #39
0
def test_rbf_svm():
    random_state = np.random.RandomState(0)
    n_samples = 100
    X = np.empty((n_samples, 2))
    X[:, 0] = np.linspace(0, 1, n_samples)
    X[:, 1] = random_state.randn(n_samples)
    y = np.sign(X[:, 1] - np.sin(2.0 * np.pi * np.sin(X[:, 0])))

    svm = SVM(kernel="rbf", C=1.0, gamma=1.0, random_state=random_state)
    svm.fit(X, y)
    y_pred = svm.predict(X)

    assert_greater(accuracy_score(y, y_pred), 0.9)
예제 #40
0
파일: misvm.py 프로젝트: DiNAi/misvm
                def iterate(cself, svm, classes):
                    cself.mention('Training SVM...')
                    D = spdiag(classes)
                    qp.update_H(D * K * D)
                    qp.update_Aeq(classes.T)
                    alphas, obj = qp.solve(cself.verbose)

                    # Construct SVM from solution
                    svm = SVM(kernel=self.kernel, gamma=self.gamma, p=self.p,
                              verbose=self.verbose, sv_cutoff=self.sv_cutoff)
                    svm._X = bs.instances
                    svm._y = classes
                    svm._alphas = alphas
                    svm._objective = obj
                    svm._compute_separator(K)
                    svm._K = K

                    cself.mention('Recomputing classes...')
                    p_conf = svm._predictions[-bs.L_p:]
                    pos_classes = np.vstack([_update_classes(part)
                                             for part in
                                             partition(p_conf, bs.pos_groups)])
                    new_classes = np.vstack([-np.ones((bs.L_n, 1)), pos_classes])

                    class_changes = round(np.sum(np.abs(classes - new_classes) / 2))
                    cself.mention('Class Changes: %d' % class_changes)
                    if class_changes == 0:
                        return None, svm

                    return {'svm': svm, 'classes': new_classes}, None
예제 #41
0
    def test_trainSvm(self):
        return
        file = os.path.join('..', 'data', 'sample')
        trainer = Trainer(file)
        t_svm = trainer._trainSvm(5, 8)

        dataSet = DigitDataSet()
        dataSet.load(file).map(5, 8)
        svm = SVM()
        svm.train(dataSet, 2, 0.0001)
        m,n = dataSet.shape()
        for i in range(m):
            X = dataSet.getData(i)
            t_y = t_svm.predict(X)
            y = svm.predict(X)
            self.assertTrue(t_y == y)
예제 #42
0
    def test_dump(self):
        data_path = os.path.join('..','data', 'sample')
        trainset = DigitDataSet()
        trainset.load(data_path).map(0, 7)
        m, n = trainset.shape()
        svm1 = SVM()
        svm1.train(trainset,2, 0.0001)
        svm1.dump('temp')

        svm2 = SVM()
        svm2.load('temp')

        for i in range(m):
            X = trainset.getData(i)
            y1 = svm1.predict(X)
            y2 = svm2.predict(X)
            self.assertTrue(y1 == y2)
예제 #43
0
    def test_getSvm(self):
        return
        trainer = Trainer()
        trainer.load()
        svm1 = trainer.getSvmInstance(6, 7)

        dataSet = DigitDataSet()
        dataSet.load(os.path.join('..', 'data', 'sample')).map(6, 7)

        svm2 = SVM()
        svm2.train(dataSet, 2, 0.0001)

        m,n = dataSet.shape()
        for i in range(m):
            X = dataSet.getData(i)
            y1= svm1.predict(X)
            y2 = svm2.predict(X)
            self.assertTrue(y1 == y2)
예제 #44
0
파일: main.py 프로젝트: AngeloK/cs584-hws
def radial_SVM():
    iris = load_iris()
    X = iris.data[:100, :2]
    y = iris.target[:100]
    plt.scatter(X[:, 0], X[:, 1], c=y)
    plt.xlabel("Sepal Width")
    plt.ylabel("Petal Length")
    plt.title("Iris")
    s = SVM(kernel="radial", gamma=0.9)
    s.fit(X, y)
    x_min, x_max = X[:, 0].min() - 5, X[:, 0].max() + 5
    y_min, y_max = X[:, 1].min() - 5, X[:, 1].max() + 5
    h = 0.02
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))
    Z = s.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.9)
    plt.scatter(X[:, 0], X[:, 1], c=y)
    plt.show()
예제 #45
0
    def test_smo(self):
        return
        data_path = os.path.join('..','data', 'sample')
        trainset = DigitDataSet()
        trainset.load(data_path).map(0, 7)
        svm = SVM()
        svm.train(trainset,2, 0.0001)

        testset = DigitDataSet()
        testset.load(os.path.join('..', 'data', 'sample')).map(0, 7)
        m,n  = testset.shape()

        err = 0
        for i in range(m):
            X = testset.getData(i)
            y = testset.getLabel(i)
            label = svm.predict(X)
            print(label, y)
            if label != y:
                err += 1
        print(float(err) / m)
예제 #46
0
파일: predict.py 프로젝트: yalog/misc
def main():
	if len(sys.argv) < 3:
		usage()
		exit(1)
	else:
		model_file = sys.argv[1]
		if len(sys.argv) == 3:
			is_known = False
			test_file = sys.argv[2]
		else:
			test_file = sys.argv[3]
			is_known = True

		try:
			svm = SVM(test_file)
			svm.load_model(model_file)
			if is_known:
				ret = svm.predict_known()
				target = ret['target']
				print "Accuracy Rate:%.2f%%"%(ret['acc'] * 100)
			else:
				target = svm.predict()
			print 'Classified Result:'
			classcified = {}
			for index, target in target.items():
				if target not in classcified:
					classcified[target] = []
				classcified[target].append(index+1)
			'''
			for t,i in classcified.items():
				print "class %g: "%(t),
				for j in i:
					print "%g, "%(j),
				print ''
			'''
			print_class(classcified)

		except IOError, msg:
			print msg
			exit(1)
예제 #47
0
파일: misvm.py 프로젝트: DiNAi/misvm
                def iterate(cself, svm, selectors, instances, K):
                    cself.mention('Training SVM...')
                    alphas, obj = qp.solve(cself.verbose)

                    # Construct SVM from solution
                    svm = SVM(kernel=self.kernel, gamma=self.gamma, p=self.p,
                              verbose=self.verbose, sv_cutoff=self.sv_cutoff)
                    svm._X = instances
                    svm._y = classes
                    svm._alphas = alphas
                    svm._objective = obj
                    svm._compute_separator(K)
                    svm._K = K

                    cself.mention('Recomputing classes...')
                    p_confs = svm.predict(bs.pos_instances)
                    pos_selectors = bs.L_n + np.array([l + np.argmax(p_confs[l:u])
                                                       for l, u in slices(bs.pos_groups)])
                    new_selectors = np.hstack([neg_selectors, pos_selectors])

                    if selectors is None:
                        sel_diff = len(new_selectors)
                    else:
                        sel_diff = np.nonzero(new_selectors - selectors)[0].size

                    cself.mention('Selector differences: %d' % sel_diff)
                    if sel_diff == 0:
                        return None, svm
                    elif sel_diff > 5:
                        # Clear results to avoid a
                        # bad starting point in
                        # the next iteration
                        qp.clear_results()

                    cself.mention('Updating QP...')
                    indices = (new_selectors,)
                    K = K_all[indices].T[indices].T
                    D = spdiag(classes)
                    qp.update_H(D * K * D)
                    return {'svm': svm, 'selectors': new_selectors,
                            'instances': bs.instances[indices], 'K': K}, None
예제 #48
0
import json

from svm import SVM

# Open all files:
with open('ex2-vocabulary.json') as file:
    vocabulary = json.load(file)
with open('ex2-train-vecs.json') as file:
    train_vecs = json.load(file)
with open('ex2-validation-vecs.json') as file:
    valid_vecs = json.load(file)

print("Building SVM...")

svm = SVM(length=len(vocabulary))

print("Start Training...")

# Train the svm:
mistakes = svm.train(train_vecs)

print('The svm missed %s%% classifications on the validation data.' %
    (svm.test(valid_vecs)*100) )

print('Writing weight vector on file.')

with open('ex4.1-w_vec.json', 'w') as file:
    file.write(json.dumps(svm.w_vec))

with open('ex4.1-obj_vec.json', 'w') as file:
예제 #49
0
파일: train.py 프로젝트: yalog/misc
	try:
		opts, args = getopt.getopt(sys.argv[1:], 'hc:g:')
	except getopt.GetoptError, msg:
		usage(msg)
		exit(1)
	
	for opt, val in opts:
		if opt == '-h':
			usage()
			exit()
		elif opt == '-c':
			param['cost'] = float(val)
		elif opt == '-g':
			param['gamma'] = float(val)
	
	if len(args) != 1:
		usage('Must specify scaled train data file')
		exit(1)

	try:
		svm = SVM(args[0])
		svm.train(param['cost'], param['gamma'])
		svm.save_model()
	except IOError, msg:
		print msg
		exit(1)

if __name__ == '__main__':
	main()
예제 #50
0
파일: test.py 프로젝트: pollo/svm
            pylab.plot(point[0],
                       point[1],
                       'go')
        else:
            pylab.plot(point[0],
                       point[1],
                       'mo')

if __name__ == "__main__":
    generate_new = False
    if generate_new:
        positive_points = generate_2d_points(5, 1, -1.5, 1, 0.5, 1)
        positive_points += generate_2d_points(5, 1, 1.5, 1, 0.5, 1)
        negative_points = generate_2d_points(10, -1, -0.5, 0.5, -0.5, 0.5)
        data = negative_points+positive_points
        random.shuffle(data)
        store_points(data, "points.txt")
    else:
        data = load_points("points.txt")

    print_data(data)

    clf = SVM('polynomial', with_slack=False, degree=2)
    clf.train(data)

    print_boundaries(clf)

    print_classification(clf)

    pylab.show()
예제 #51
0
import numpy as np
import matplotlib.pyplot as plt
from svm import SVM


random_state = np.random.RandomState(0)
n_samples = 20
X = random_state.rand(n_samples, 2)
y = np.ones(n_samples)
y[X[:, 0] + 0.1 * random_state.randn(n_samples) < 0.5] = -1.0


plt.figure()
for i, C in enumerate([1e-3, 1.0, 1e3, np.inf]):
    svm = SVM(kernel="linear", C=C, random_state=random_state)
    svm.fit(X, y)

    xx = np.linspace(0, 1)
    a = -svm.coef_[0] / svm.coef_[1]
    yy = a * xx - svm.intercept_ / svm.coef_[1]

    plt.subplot(2, 2, 1 + i)
    plt.scatter(svm.support_vectors_[:, 0], svm.support_vectors_[:, 1],
                c="green", s=100)
    plt.scatter(X[:, 0], X[:, 1], c=y)
    plt.plot(xx, yy, 'k-')
    plt.title("$C = %g$" % C)
    plt.xlim(0, 1)
    plt.ylim(0, 1)
    plt.xticks(())
    plt.yticks(())
예제 #52
0
import numpy as np
import matplotlib.pyplot as plt
from svm import SVM


random_state = np.random.RandomState(0)
n_samples = 20
X = random_state.rand(n_samples, 2)
y = np.ones(n_samples)
y[X[:, 0] + 0.1 * random_state.randn(n_samples) < 0.5] = -1.0


plt.figure()
for i, C in enumerate([1.0, 1e1, 1e2, np.inf]):
    svm = SVM(kernel="rbf", C=C, gamma=10.0, random_state=random_state)
    svm.fit(X, y)

    X_grid, Y_grid = np.meshgrid(np.linspace(0, 1, 50), np.linspace(0, 1, 50))
    X_test = np.vstack(map(np.ravel, (X_grid, Y_grid))).T
    Z_grid = svm.predict(X_test).reshape(X_grid.shape)

    plt.subplot(2, 2, 1 + i)
    plt.contourf(X_grid, Y_grid, Z_grid, alpha=0.3)
    plt.scatter(svm.support_vectors_[:, 0], svm.support_vectors_[:, 1],
                c="green", s=100)
    plt.scatter(X[:, 0], X[:, 1], c=y)
    plt.title("$C = %g$" % C)
    plt.xlim(0, 1)
    plt.ylim(0, 1)
    plt.xticks(())
    plt.yticks(())
예제 #53
0
파일: SdA.py 프로젝트: karishma14/DAE
class SdA(object):
    """Stacked denoising auto-encoder class (SdA)

    A stacked denoising autoencoder model is obtained by stacking several
    dAs. The hidden layer of the dA at layer `i` becomes the input of
    the dA at layer `i+1`. The first layer dA gets as input the input of
    the SdA, and the hidden layer of the last dA represents the output.
    Note that after pretraining, the SdA is dealt with as a normal MLP,
    the dAs are only used to initialize the weights.
    """

    def __init__(
        self,
        numpy_rng,
        theano_rng=None,
        n_ins=156*256,
        hidden_layers_sizes=[5000, 500],
        n_outs=10,
        corruption_levels=[0.1, 0.1]
    ):
        """ This class is made to support a variable number of layers.

        :type numpy_rng: numpy.random.RandomState
        :param numpy_rng: numpy random number generator used to draw initial
                    weights

        :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
        :param theano_rng: Theano random generator; if None is given one is
                           generated based on a seed drawn from `rng`

        :type n_ins: int
        :param n_ins: dimension of the input to the sdA

        :type n_layers_sizes: list of ints
        :param n_layers_sizes: intermediate layers size, must contain
                               at least one value

        :type n_outs: int
        :param n_outs: dimension of the output of the network

        :type corruption_levels: list of float
        :param corruption_levels: amount of corruption to use for each
                                  layer
        """

        self.sigmoid_layers = []
        self.dA_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)

        assert self.n_layers > 0

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')  # the data is presented as rasterized images
        self.y = T.matrix('y',dtype="int32")  # the labels are presented as 1D vector of
                                 # [int] labels
        # end-snippet-1

        # The SdA is an MLP, for which all weights of intermediate layers
        # are shared with a different denoising autoencoders
        # We will first construct the SdA as a deep multilayer perceptron,
        # and when constructing each sigmoidal layer we also construct a
        # denoising autoencoder that shares weights with that layer
        # During pretraining we will train these autoencoders (which will
        # lead to chainging the weights of the MLP as well)
        # During finetunining we will finish training the SdA by doing
        # stochastich gradient descent on the MLP

        # start-snippet-2
        for i in xrange(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden units of
            # the layer below or the input size if we are on the first layer
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]

            # the input to this layer is either the activation of the hidden
            # layer below or the input of the SdA if you are on the first
            # layer
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)
            # its arguably a philosophical question...
            # but we are going to only declare that the parameters of the
            # sigmoid_layers are parameters of the StackedDAA
            # the visible biases in the dA are parameters of those
            # dA, but not the SdA
            self.params.extend(sigmoid_layer.params)

            # Construct a denoising autoencoder that shared weights with this
            # layer
            dA_layer = dA(numpy_rng=numpy_rng,
                          theano_rng=theano_rng,
                          input=layer_input,
                          n_visible=input_size,
                          n_hidden=hidden_layers_sizes[i],
                          W=sigmoid_layer.W,
                          bhid=sigmoid_layer.b)
            self.dA_layers.append(dA_layer)
        # end-snippet-2
        # We now need to add a logistic layer on top of the MLP
        self.svmLayer = SVM(
            input=self.sigmoid_layers[-1].output,
            n_in=hidden_layers_sizes[-1],
            n_out=n_outs
        )

        self.params.extend(self.svmLayer.params)
        # construct a function that implements one step of finetunining

        # compute the cost for second phase of training,
        # defined as the negative log likelihood
        
        self.finetune_cost = self.svmLayer.cost(self.y)
        # compute the gradients with respect to the model parameters
        # symbolic variable that points to the number of errors made on the
        # minibatch given by self.x and self.y
        self.errors = self.svmLayer.errors(self.y)

    def pretraining_functions(self, train_set_x, batch_size):
        ''' Generates a list of functions, each of them implementing one
        step in trainnig the dA corresponding to the layer with same index.
        The function will require as input the minibatch index, and to train
        a dA you just need to iterate, calling the corresponding function on
        all minibatch indexes.

        :type train_set_x: theano.tensor.TensorType
        :param train_set_x: Shared variable that contains all datapoints used
                            for training the dA

        :type batch_size: int
        :param batch_size: size of a [mini]batch

        :type learning_rate: float
        :param learning_rate: learning rate used during training for any of
                              the dA layers
        '''

        # index to a [mini]batch
        index = T.lscalar('index')  # index to a minibatch
        corruption_level = T.scalar('corruption')  # % of corruption to use
        learning_rate = T.scalar('lr')  # learning rate to use
        # begining of a batch, given `index`
        batch_begin = index * batch_size
        # ending of a batch given `index`
        batch_end = batch_begin + batch_size

        pretrain_fns = []
        for dA in self.dA_layers:
            # get the cost and the updates list
            cost, updates = dA.get_cost_updates(corruption_level,
                                                learning_rate)
            # compile the theano function
            fn = theano.function(
                inputs=[
                    index,
                    theano.Param(corruption_level, default=0.2),
                    theano.Param(learning_rate, default=0.1)
                ],
                outputs=cost,
                updates=updates,
                givens={
                    self.x: train_set_x[batch_begin: batch_end]
                }
            )
            # append `fn` to the list of functions
            pretrain_fns.append(fn)

        return pretrain_fns

    def build_finetune_functions(self, datasets, batch_size, learning_rate):
        '''Generates a function `train` that implements one step of
        finetuning, a function `validate` that computes the error on
        a batch from the validation set, and a function `test` that
        computes the error on a batch from the testing set

        :type datasets: list of pairs of theano.tensor.TensorType
        :param datasets: It is a list that contain all the datasets;
                         the has to contain three pairs, `train`,
                         `valid`, `test` in this order, where each pair
                         is formed of two Theano variables, one for the
                         datapoints, the other for the labels

        :type batch_size: int
        :param batch_size: size of a minibatch

        :type learning_rate: float
        :param learning_rate: learning rate used during finetune stage
        '''

        (train_set_x, train_set_y) = datasets[0]
        (valid_set_x, valid_set_y) = datasets[1]
        (test_set_x, test_set_y) = datasets[2]

        # compute number of minibatches for training, validation and testing
        print train_set_x.get_value(borrow=True).shape
        
        n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
        n_valid_batches /= batch_size
        n_test_batches = test_set_x.get_value(borrow=True).shape[0]
        n_test_batches /= batch_size

        index = T.lscalar('index')  # index to a [mini]batch

        # compute the gradients with respect to the model parameters
        gparams = T.grad(self.finetune_cost, self.params)

        # compute list of fine-tuning updates
        updates = [
            (param, param - gparam * learning_rate)
            for param, gparam in zip(self.params, gparams)
        ]

        train_fn = theano.function(
            inputs=[index],
            outputs=self.finetune_cost,
            updates=updates,
            givens={
                self.x: train_set_x[
                    index * batch_size: (index + 1) * batch_size
                ],
                self.y: train_set_y[
                    index * batch_size: (index + 1) * batch_size
                ]
            },
            name='train'
        )

        test_score_i = theano.function(
            [index],
            self.errors,
            givens={
                self.x: test_set_x[
                    index * batch_size: (index + 1) * batch_size
                ],
                self.y: test_set_y[
                    index * batch_size: (index + 1) * batch_size
                ]
            },
            name='test'
        )

        valid_score_i = theano.function(
            [index],
            self.errors,
            givens={
                self.x: valid_set_x[
                    index * batch_size: (index + 1) * batch_size
                ],
                self.y: valid_set_y[
                    index * batch_size: (index + 1) * batch_size
                ]
            },
            name='valid'
        )

        # Create a function that scans the entire validation set
        def valid_score():
            return [valid_score_i(i) for i in xrange(n_valid_batches)]

        # Create a function that scans the entire test set
        def test_score():
            return [test_score_i(i) for i in xrange(n_test_batches)]

        return train_fn, valid_score, test_score
예제 #54
0
import matplotlib.pyplot as pyplot
from svm import SVM

Original_Data = numpy.array([
    [3,3],
    [4,3],
    [1,1]]).transpose()

Tag = numpy.array([
    [+1],
    [+1],
    [-1]]).transpose()

Tag = Tag.flatten()

a = SVM(Original_Data, Tag)

a.train()

for i in range(Original_Data.shape[1]):
    if Tag[i] == +1:
        pyplot.plot(Original_Data[0][i], Original_Data[1][i], "or")
    else:
        pyplot.plot(Original_Data[0][i], Original_Data[1][i], "ob")

x = numpy.arange(-5, +5, 0.01)
pyplot.plot(x, -((a.W[1] * x + a.b)/a.W[0]))

pyplot.show()

예제 #55
0
파일: SdA.py 프로젝트: karishma14/DAE
    def __init__(
        self,
        numpy_rng,
        theano_rng=None,
        n_ins=156*256,
        hidden_layers_sizes=[5000, 500],
        n_outs=10,
        corruption_levels=[0.1, 0.1]
    ):
        """ This class is made to support a variable number of layers.

        :type numpy_rng: numpy.random.RandomState
        :param numpy_rng: numpy random number generator used to draw initial
                    weights

        :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
        :param theano_rng: Theano random generator; if None is given one is
                           generated based on a seed drawn from `rng`

        :type n_ins: int
        :param n_ins: dimension of the input to the sdA

        :type n_layers_sizes: list of ints
        :param n_layers_sizes: intermediate layers size, must contain
                               at least one value

        :type n_outs: int
        :param n_outs: dimension of the output of the network

        :type corruption_levels: list of float
        :param corruption_levels: amount of corruption to use for each
                                  layer
        """

        self.sigmoid_layers = []
        self.dA_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)

        assert self.n_layers > 0

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')  # the data is presented as rasterized images
        self.y = T.matrix('y',dtype="int32")  # the labels are presented as 1D vector of
                                 # [int] labels
        # end-snippet-1

        # The SdA is an MLP, for which all weights of intermediate layers
        # are shared with a different denoising autoencoders
        # We will first construct the SdA as a deep multilayer perceptron,
        # and when constructing each sigmoidal layer we also construct a
        # denoising autoencoder that shares weights with that layer
        # During pretraining we will train these autoencoders (which will
        # lead to chainging the weights of the MLP as well)
        # During finetunining we will finish training the SdA by doing
        # stochastich gradient descent on the MLP

        # start-snippet-2
        for i in xrange(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden units of
            # the layer below or the input size if we are on the first layer
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]

            # the input to this layer is either the activation of the hidden
            # layer below or the input of the SdA if you are on the first
            # layer
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)
            # its arguably a philosophical question...
            # but we are going to only declare that the parameters of the
            # sigmoid_layers are parameters of the StackedDAA
            # the visible biases in the dA are parameters of those
            # dA, but not the SdA
            self.params.extend(sigmoid_layer.params)

            # Construct a denoising autoencoder that shared weights with this
            # layer
            dA_layer = dA(numpy_rng=numpy_rng,
                          theano_rng=theano_rng,
                          input=layer_input,
                          n_visible=input_size,
                          n_hidden=hidden_layers_sizes[i],
                          W=sigmoid_layer.W,
                          bhid=sigmoid_layer.b)
            self.dA_layers.append(dA_layer)
        # end-snippet-2
        # We now need to add a logistic layer on top of the MLP
        self.svmLayer = SVM(
            input=self.sigmoid_layers[-1].output,
            n_in=hidden_layers_sizes[-1],
            n_out=n_outs
        )

        self.params.extend(self.svmLayer.params)
        # construct a function that implements one step of finetunining

        # compute the cost for second phase of training,
        # defined as the negative log likelihood
        
        self.finetune_cost = self.svmLayer.cost(self.y)
        # compute the gradients with respect to the model parameters
        # symbolic variable that points to the number of errors made on the
        # minibatch given by self.x and self.y
        self.errors = self.svmLayer.errors(self.y)
예제 #56
0
max_iter=20

w_vec_list = []
avg_train_err = []
avg_valid_err = []

print("Starting experiments...")
for val in range(-9, 10):
    
    print("  Experiment with val=2**%s" %
        (val if val>=0 else ("(%s)" % val))
      )

    # Build a new svm:
    svm = SVM(w_vec=w_vec, lamb=2**val)

    # Train it
    num_erros = svm.train(train_vecs, max_iter=max_iter)

    # Save the weight vector:
    w_vec_list.append( svm.w_vec )

    # Save the train data:
    avg_train_err.append( float(num_erros)/(max_iter*len(train_vecs)) )

    # Save the validation data:
    avg_valid_err.append( svm.test(valid_vecs) )

min_err = sorted(
    zip(range(-9,10), avg_valid_err),