예제 #1
0
def mturk_test():

    embedding_dim = 300

    Y = get_mturk_outcomes()
    Y = (Y - np.mean(Y, axis=0)) / np.std(Y, axis=0)

    X = np.load('../data/mturk_embedded.npz')

    # X0 = X['arr_0']
    # X1 = X['arr_1']
    X2 = X['arr_2']
    # X3 = X['arr_3']

    m = SWEM(embedding_dimension=embedding_dim,
             num_outputs=2,
             learning_rate=1e-4,
             activation_fn=tf.nn.elu,
             embedding_mlp_depth=2,
             prediction_mlp_layers=(120, 24))

    # m.train(X0, Y, plotfile='../img/X0_training.png')
    m.train(X2,
            Y[:, :2],
            plotfile='../img/X2_Y01_training.png',
            batch_size=100,
            epochs=20)  # m.train(X2, Y, plotfile='../img/X2_training.png')
예제 #2
0
def random_noise_test():

    embedding_dim = 300
    data_size = 1000

    X = [
        np.random.randn(np.random.randint(10, 100), embedding_dim)
        for i in range(data_size)
    ]

    Y = .2 * np.random.randn(data_size) + .5

    m = SWEM(embedding_dimension=embedding_dim)

    m.train(X, Y, plotfile='../img/test_training.png')