def test_sym_nnvm(batch_size, iter_num): logger = logging.getLogger("log.test.nnvm") logger.info("=== Log Test NNVM ===") sym_file, param_file, ext_file = load_fname("_darknet53_voc", "mrt.all.quantize", True) sym, params = mx.sym.load(sym_file), nd.load(param_file) inputs_ext, _ = sim.load_ext(ext_file) nnvm_sym, nnvm_params = spass.mxnet_to_nnvm(sym, params, inputs_ext) spass.cvm_build(nnvm_sym, nnvm_params, inputs_ext, *load_fname("_darknet53_voc", "nnvm"))
def std_dump(sym, params, inputs_ext, data, model_name, is_mxnet=True, batch=False, data_dtype="int8", max_num=20, dump_ops=[]): if not batch: for k, v in inputs_ext.items(): v['shape'] = (1, *v['shape'][1:]) data = data[0].reshape(inputs_ext['data']['shape']) datadir = "/data/std_out/" + model_name os.makedirs(datadir, exist_ok=True) if is_mxnet: data = sim.load_real_data(data, 'data', inputs_ext) inputs_ext['data']['data'] = data spass.sym_dump_layer_outputs(sym, params, inputs_ext, datadir, data_dtype=data_dtype, max_num=max_num, dump_ops=dump_ops, ctx=mx.gpu(0)) sym, params = spass.mxnet_to_nnvm(sym, params, inputs_ext) else: tvm_graph, tvm_params, lib = spass.cvm_build(sym, params, inputs_ext, "/dev/null", "/dev/null", runtime="tvm", target="llvm", dtype="int32") model = graph_runtime.create(tvm_graph, lib, tvm.cpu()) model.set_input(**params) model.set_input("data", data) model.run() np.save(datadir + "/data.npy", data.asnumpy().astype('int8')) for i in range(len(sym.list_output_names())): out = model.get_output(i).asnumpy() np.save("%s/result_%d.npy" % (datadir, i), out) return spass.cvm_build(sym, params, inputs_ext, datadir + "/symbol", datadir + "/params")
def test_sym_pass(batch_size=10, iter_num=10, quantize=True): logger = logging.getLogger("log.test.sym.pass") calib_ctx = mx.gpu(1) ctx = [mx.gpu(int(i)) for i in "1,2,3,4".split(',') if i.strip()] inputs_ext = { 'data': { 'shape': (batch_size, 3, 224, 224), } } inputs = [mx.sym.var(name) for name in inputs_ext] logger.info("load dataset, symbol and parameters") # load dataset and iter function data_iter = ds.load_imagenet_rec(batch_size) def data_iter_func(): data = data_iter.next() return data.data[0], data.label[0] data, _ = data_iter_func() # load original model for accuracy net1 = utils.load_model(*load_fname(version), inputs, ctx=ctx) acc_top1 = mx.metric.Accuracy() acc_top5 = mx.metric.TopKAccuracy(5) acc_top1.reset() acc_top5.reset() def shufflenet(data, label): data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0, even_split=False) res = [net1.forward(d) for d in data] res = nd.concatenate(res) acc_top1.update(label, res) _, top1 = acc_top1.get() acc_top5.update(label, res) _, top5 = acc_top5.get() return "top1={:6.2%} top5={:6.2%}".format(top1, top5) if quantize: # load original model sym_fname, param_fname = load_fname(version) sym, params = mx.sym.load(sym_fname), nd.load(param_fname) sym, params = spass.sym_quant_prepare(sym, params, inputs_ext) # quantize process mrt = _mrt.MRT(sym, params, inputs_ext) # initialize mrt.set_data('data', data) # set input data mrt.calibrate(ctx=calib_ctx) # calibration mrt.set_output_prec(8) # set output prec, do nothing by default qsym, qparams, inputs_ext = mrt.quantize() # quantization # dump quantized model dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True) sim.save_ext(dump_ext, inputs_ext) nd.save(dump_params, qparams) open(dump_sym, "w").write(qsym.tojson()) if False: # convert to cvm executor model inputs_ext['data']['shape'] = (1, 3, 224, 224) nnvm_sym, nnvm_params = spass.mxnet_to_nnvm(qsym, qparams, inputs_ext) spass.cvm_build(nnvm_sym, nnvm_params, inputs_ext, *load_fname(version, "nnvm")) # load quantized model for accuracy dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True) (inputs_ext, ) = sim.load_ext(dump_ext) inputs = [mx.sym.var(n) for n in inputs_ext] net3 = utils.load_model(dump_sym, dump_params, inputs, ctx=ctx) # net3 = mx.gluon.nn.SymbolBlock(qsym, inputs) # utils.load_parameters(net3, qparams, ctx=ctx) qacc_top1 = mx.metric.Accuracy() qacc_top5 = mx.metric.TopKAccuracy(5) qacc_top1.reset() qacc_top5.reset() def cvm_quantize(data, label): data = sim.load_real_data(data, 'data', inputs_ext) data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0, even_split=False) res = [net3.forward(d) for d in data] res = nd.concatenate(res) qacc_top1.update(label, res) _, top1 = qacc_top1.get() qacc_top5.update(label, res) _, top5 = qacc_top5.get() return "top1={:6.2%} top5={:6.2%}".format(top1, top5) # compare accuracy between models utils.multi_validate(shufflenet, data_iter_func, cvm_quantize, iter_num=iter_num, logger=logger)
def test_mx_quantize(batch_size=10, iter_num=10): logger = logging.getLogger("log.test.mx.quantize") ctx = [mx.gpu(int(i)) for i in "1,3".split(',') if i.strip()] inputs_ext = { 'data': { 'shape': (batch_size, 3, 224, 224), }} inputs = [mx.sym.var(n) for n in inputs_ext] data_iter = ds.load_imagenet_rec(batch_size) def data_iter_func(): data = data_iter.next() return data.data[0], data.label[0] data, _ = data_iter_func() net1 = utils.load_model(*load_fname(version), inputs, ctx=ctx) acc_top1 = mx.metric.Accuracy() acc_top5 = mx.metric.TopKAccuracy(5) acc_top1.reset() acc_top5.reset() def mobilenet(data, label): data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0, even_split=False) res = [net1.forward(d) for d in data] res = nd.concatenate(res) acc_top1.update(label, res) _, top1 = acc_top1.get() acc_top5.update(label, res) _, top5 = acc_top5.get() return "top1={:6.2%} top5={:6.2%}".format(top1, top5) calib_ctx = mx.gpu(1) sym_fname, param_fname = load_fname(version) sym, params = mx.sym.load(sym_fname), nd.load(param_fname) sym, params = spass.sym_quant_prepare(sym, params, inputs_ext) if True: if True: mrt = _mrt.MRT(sym, params, inputs_ext) mrt.set_data('data', data) mrt.calibrate() # [ 0.0008745864 0.03330660510427334 ] 0.6670066884888368 0.7753906 # mrt.set_threshold("mobilenet0_dense0_weight", 0.67) # # [ -0.0036011334 0.054821780899052534 ] 1.100036751338784 1.4626989 # mrt.set_threshold("mobilenet0_conv24_batchnorm24_fwd_weight", 1.1) # # [ 0.013243316 1.7543557133786065 ] 70.18747185088569 94.66275 # mrt.set_threshold("mobilenet0_conv23_batchnorm23_fwd_weight", 35.10) # # [ -0.0016149869 0.05713169649243355 ] 1.1442489167675376 1.7122083 # mrt.set_threshold("mobilenet0_conv20_batchnorm20_fwd_weight", 1.144) # # [ -0.0015804865 0.04523811489343643 ] 0.9063427844084799 1.0745146 # mrt.set_threshold("mobilenet0_conv16_batchnorm16_fwd_weight", 0.90) # # [ 0.4315614 2.447332109723772 ] 49.37820360490254 63.959927 # mrt.set_threshold("mobilenet0_conv2_batchnorm2_fwd", 49.37) # # [ 0.9770754 1.3392452512468611 ] 27.761980422905516 40.729546 # mrt.set_threshold("mobilenet0_relu2_fwd", 27.76) # [ 1.0975745 1.0489919010632773 ] 22.077412493692915 23.784576 # mrt.set_threshold("mobilenet0_relu4_fwd", 22.08) # # [ 0.9885562 2.360489403014386 ] 48.19834426651407 69.22121 # mrt.set_threshold("mobilenet0_conv5_batchnorm5_fwd", 48.2) # # [ 0.7895588 1.0544661745870065 ] 21.878882319617176 30.95745 # mrt.set_threshold("mobilenet0_relu17_fwd", 21.88) # # [ 0.8717863 1.0887600296120434 ] 22.646986888608513 28.265652 # mrt.set_threshold("mobilenet0_relu19_fwd", 22.65) # # [ 0.35124516 0.6501711574631898 ] 13.354668314135012 20.770807 # mrt.set_threshold("mobilenet0_relu20_fwd", 13.35) # # [ 0.9378179 1.110470714216975 ] 23.147232155910086 27.886068 # mrt.set_threshold("mobilenet0_relu21_fwd", 23.15) # # [ 0.36263302 0.6352599878026505 ] 13.067832775738754 17.18809 # mrt.set_threshold("mobilenet0_relu22_fwd", 13.07) # # [ 0.19875833 0.49999100821358816 ] 10.198578498193196 16.625143 # mrt.set_threshold("mobilenet0_relu24_fwd", 10.2) # # [ 0.32357717 1.6308352606637138 ] 65.55698759215218 75.84912 # mrt.set_threshold("mobilenet0_conv25_batchnorm25_fwd", 32.94) # # [ 0.36793178 1.512995992388044 ] 30.62785163096019 49.464615 # mrt.set_threshold("mobilenet0_relu26_fwd", 30.63) # # [ 18.028658 38.61970520019531 ] 790.4227619171143 805.51886 # mrt.set_threshold("sum0", 790.423) mrt.set_output_prec(8) qsym, qparams, inputs_ext = mrt.quantize() else: inputs_ext['data']['data'] = data th_dict = calib.sym_calibrate(sym, params, inputs_ext, ctx=calib_ctx) qsym, qparams, precs, _ = calib.sym_simulate(sym, params, inputs_ext, th_dict) qsym, qparams = calib.sym_realize(qsym, qparams, inputs_ext, precs) dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True) sim.save_ext(dump_ext, inputs_ext) nd.save(dump_params, qparams) open(dump_sym, "w").write(qsym.tojson()) dump_sym, dump_params = load_fname(version, "nnvm.compile") nnvm_sym, nnvm_params = spass.mxnet_to_nnvm(qsym, qparams, inputs_ext) spass.cvm_build(nnvm_sym, nnvm_params, inputs_ext, dump_sym, dump_params) dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True) (inputs_ext,) = sim.load_ext(dump_ext) net2 = utils.load_model(dump_sym, dump_params, inputs, ctx=ctx) qacc_top1 = mx.metric.Accuracy() qacc_top5 = mx.metric.TopKAccuracy(5) qacc_top1.reset() qacc_top5.reset() def cvm_quantize(data, label): data = sim.load_real_data(data, 'data', inputs_ext) data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0, even_split=False) res = [net2.forward(d) for d in data] res = nd.concatenate(res) qacc_top1.update(label, res) _, top1 = qacc_top1.get() qacc_top5.update(label, res) _, top5 = qacc_top5.get() return "top1={:6.2%} top5={:6.2%}".format(top1, top5) utils.multi_validate(mobilenet, data_iter_func, cvm_quantize, iter_num=iter_num, logger=logger)
mrt.set_data('data', data) # set input data mrt.calibrate(ctx=calib_ctx) # calibration mrt.set_output_prec(8) # set output prec, do nothing by default qsym, qparams, inputs_ext = mrt.quantize() # quantization if False: # dump quantized model dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True) sim.save_ext(dump_ext, inputs_ext) nd.save(dump_params, qparams) open(dump_sym, "w").write(qsym.tojson()) # convert to cvm executor model inputs_ext['data']['shape'] = (1, 3, input_size, input_size) nnvm_sym, nnvm_params = spass.mxnet_to_nnvm(qsym, qparams, inputs_ext) spass.cvm_build(nnvm_sym, nnvm_params, inputs_ext, *load_fname(version, "nnvm")) # load quantized model for accuracy net3 = mx.gluon.nn.SymbolBlock(qsym, inputs) utils.load_parameters(net3, qparams, ctx=ctx) qacc_top1 = mx.metric.Accuracy() qacc_top5 = mx.metric.TopKAccuracy(5) qacc_top1.reset() qacc_top5.reset() def cvm_quantize(data, label): data = sim.load_real_data(data, 'data', inputs_ext) data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0,
elif op_name in attr_scales: scales = attr_scales[op_name] else: return node for k, v in scales.items(): assert k in attr, "attribute %s not in %s(%s) with %s" \ % (k, op_name, name, attr.keys()) attr[k] = int(float(attr[k]) * oscales_dict[v]) node = sutils.get_mxnet_op(op_name)(*childs, **attr, name=name) return node maps = mrt.get_maps() qsym, qparams = _mrt.merge_model(qsym, qparams, sym2, prm2, maps, op_scales) cvm_flag = cfg["cvm"] cvm_batch_size = cvm_flag["batch_size"] cvm_batch_size = batch_size if cvm_batch_size == -1 else cvm_batch_size shp = tuple(cvm_batch_size if s == -1 else s for s in input_shape) inputs_ext["data"]["shape"] = shp nnvm_sym, nnvm_params = spass.mxnet_to_nnvm(qsym, qparams, inputs_ext) cvm_dir = cfg["cvm"]["dir"] spass.cvm_build(nnvm_sym, nnvm_params, inputs_ext, path.join(cvm_dir, "cvm.symbol"), path.join(cvm_dir, "cvm.params")) if cfg["cvm"]["save_ext"]: sim.save_ext(path.join(cvm_dir, "cvm.ext"), inputs_ext, oscales)