def projx(self, z: torch.Tensor) -> torch.Tensor: """ Project point :math:`z` on the manifold. In this space, we need to ensure that Y = Id - \overline(Z)Z is positive definite. Steps to project: Z complex symmetric matrix 1) Z = SDS^-1 2) D_tilde = clamp(D, max=1 - epsilon) 3) Z_tilde = Ŝ D_tilde S^* :param z: points to be projected: (b, 2, n, n) """ z = super().projx(z) eigenvalues, s = self.takagi_factorization.factorize(z) eigenvalues_tilde = torch.clamp(eigenvalues, max=1 - sm.EPS[z.dtype]) diag_tilde = sm.diag_embed(eigenvalues_tilde) z_tilde = sm.bmm3(sm.conjugate(s), diag_tilde, sm.conj_trans(s)) # we do this so no operation is applied on the matrices that already belong to the space. # This prevents modifying values due to numerical instabilities/floating point ops batch_wise_mask = torch.all(eigenvalues < 1 - sm.EPS[z.dtype], dim=-1, keepdim=True) already_in_space_mask = batch_wise_mask.unsqueeze(-1).unsqueeze( -1).expand_as(z) self.projected_points += len(z) - sum(batch_wise_mask).item() return torch.where(already_in_space_mask, z, z_tilde)
def inner(self, z: torch.Tensor, u: torch.Tensor, v=None, *, keepdim=False) -> torch.Tensor: """ Inner product for tangent vectors at point :math:`z`. For the upper half space model, the inner product at point z = x + iy of the vectors u, v it is (z, u, v are complex symmetric matrices): g_{z}(u, v) = tr[ y^-1 u y^-1 \ov{v} ] :param z: torch.Tensor point on the manifold: b x 2 x n x n :param u: torch.Tensor tangent vector at point :math:`z`: b x 2 x n x n :param v: Optional[torch.Tensor] tangent vector at point :math:`z`: b x 2 x n x n :param keepdim: bool keep the last dim? :return: torch.Tensor inner product (broadcastable): b x 2 x 1 x 1 """ if v is None: v = u inv_imag_z = torch.inverse(sm.imag(z)) inv_imag_z = sm.stick(inv_imag_z, torch.zeros_like(inv_imag_z)) res = sm.bmm3(inv_imag_z, u, inv_imag_z) res = sm.bmm(res, sm.conjugate(v)) real_part = sm.trace(sm.real(res), keepdim=True) # b x 1 real_part = torch.unsqueeze(real_part, -1) # b x 1 x 1 return sm.stick(real_part, real_part) # b x 2 x 1 x 1
def test_takagi_factorization_very_large_values(self): a = get_random_symmetric_matrices(3, 3) * 1000 eigenvalues, s = TakagiFactorization(3).factorize(a) diagonal = torch.diag_embed(eigenvalues) diagonal = sm.stick(diagonal, torch.zeros_like(diagonal)) self.assertAllClose( a, sm.bmm3(sm.conjugate(s), diagonal, sm.conj_trans(s)))
def test_takagi_factorization_real_neg_imag_neg(self): a = get_random_symmetric_matrices(3, 3) a = sm.stick(sm.real(a) * -1, sm.imag(a) * -1) eigenvalues, s = TakagiFactorization(3).factorize(a) diagonal = torch.diag_embed(eigenvalues) diagonal = sm.stick(diagonal, torch.zeros_like(diagonal)) self.assertAllClose( a, sm.bmm3(sm.conjugate(s), diagonal, sm.conj_trans(s)))
def test_takagi_factorization_real_identity(self): a = sm.identity_like(get_random_symmetric_matrices(3, 3)) eigenvalues, s = TakagiFactorization(3).factorize(a) diagonal = torch.diag_embed(eigenvalues) diagonal = sm.stick(diagonal, torch.zeros_like(diagonal)) self.assertAllClose( a, sm.bmm3(sm.conjugate(s), diagonal, sm.conj_trans(s))) self.assertAllClose(a, s) self.assertAllClose(torch.ones_like(eigenvalues), eigenvalues)
def egrad2rgrad(self, z: torch.Tensor, u: torch.Tensor) -> torch.Tensor: """ Transform gradient computed using autodiff to the correct Riemannian gradient for the point :math:`x`. If you have a function f(z) on Hn, then the gradient is the A * grad_eucl(f(z)) * A, where A = (Id - \overline{Z}Z) :param z: point on the manifold. Shape: (b, 2, n, n) :param u: gradient to be projected: Shape: same than z :return grad vector in the Riemannian manifold. Shape: same than z """ a = get_id_minus_conjugate_z_times_z(z) a_times_grad_times_a = sm.bmm3(a, u, a) return a_times_grad_times_a
def test_takagi_factorization_real_diagonal(self): a = get_random_symmetric_matrices(3, 3) * 10 a = torch.where(sm.identity_like(a) == 1, a, torch.zeros_like(a)) eigenvalues, s = TakagiFactorization(3).factorize(a) diagonal = torch.diag_embed(eigenvalues) diagonal = sm.stick(diagonal, torch.zeros_like(diagonal)) self.assertAllClose( a, sm.bmm3(sm.conjugate(s), diagonal, sm.conj_trans(s))) # real part of eigenvectors is made of vectors with one 1 and all zeros real_part = torch.sum(torch.abs(sm.real(s)), dim=-1) self.assertAllClose(torch.ones_like(real_part), real_part) # imaginary part of eigenvectors is all zeros self.assertAllClose(torch.zeros(1), torch.sum(sm.imag(s)))
def egrad2rgrad(self, z: torch.Tensor, u: torch.Tensor) -> torch.Tensor: """ Transform gradient computed using autodiff to the correct Riemannian gradient for the point :math:`x`. If you have a function f(z) on Mn, then the Riemannian gradient is grad_R(f(z)) = (Id + ẑz) * grad_E(f(z)) * (Id + zẑ) :param z: point on the manifold. Shape: (b, 2, n, n) :param u: gradient to be projected: Shape: same than z :return grad vector in the Riemannian manifold. Shape: same than z """ id = sm.identity_like(z) conjz = sm.conjugate(z) id_plus_conjz_z = id + sm.bmm(conjz, z) id_plus_z_conjz = id + sm.bmm(z, conjz) riem_grad = sm.bmm3(id_plus_conjz_z, u, id_plus_z_conjz) return riem_grad
def test_bmm3(self): x_real = torch.Tensor([[[1, -3], [5, -7]]]) x_imag = torch.Tensor([[[9, -11], [-14, 15]]]) x = sm.stick(x_real, x_imag) y_real = torch.Tensor([[[9, -11], [-14, 15]]]) y_imag = torch.Tensor([[[1, -3], [5, -7]]]) y = sm.stick(y_real, y_imag) z_real = torch.Tensor([[[-3, -1], [-2, 5]]]) z_imag = torch.Tensor([[[-1, 3], [0, -2]]]) z = sm.stick(z_real, z_imag) expected_real = torch.Tensor([[[142, -1782], [-418, 1357]]]) expected_imag = torch.Tensor([[[-268, -948], [190, 2871]]]) expected = sm.stick(expected_real, expected_imag) result = sm.bmm3(x, y, z) self.assertAllClose(expected, result)
def dist(self, w: torch.Tensor, x: torch.Tensor, *, keepdim=False) -> torch.Tensor: """ Given W, X in the compact dual: 1 - TakagiFact(W) -> W = ÛPU* 2 - U unitary, P diagonal, Û: U conjugate, U*: U conjugate transpose 3 - Define A = (Id + P^2)^(-1/2) 4 - Define M = [(A -AP), (AP A)] * [(U^t 0), (0 U)] 5 - MW = 0 by construction. Y = MX implies Y = [(A -AP), (AP A)] * [(U^t 0), (0 U)] * X Y = [(A -AP), (AP A)] * U^tXU Lets call Q = U^tXU Y = (AQ - AP) (APQ + A)^-1 6 - TakagiFact(Y) = ŜDS* 7 - Distance = sqrt[ sum ( arctan(d_k)^2 ) ] with d_k the diagonal entries of D :param w, x: b x 2 x n x n: elements in the Compact Dual :param keepdim: :return: distance between w and x in the compact dual """ p, u = self.takagi_factorization.factorize(w) # p: b x n, u: b x 2 x n x n # Define A: since (Id + P^2) is diagonal, taking the matrix sqrt is just the sqrt of the entries # Moreover, then taking the inverse of that is taking the inverse of the entries. a = 1 + p**2 a = 1 / torch.sqrt(a) a = sm.diag_embed(a) p = sm.diag_embed(p) q = sm.bmm3(sm.transpose(u), x, u) ap = sm.bmm(a, p) aq_minus_ap = sm.subtract(sm.bmm(a, q), ap) apq_plus_a_inv = sm.add(sm.bmm(ap, q), a) apq_plus_a_inv = sm.inverse(apq_plus_a_inv) y = sm.bmm(aq_minus_ap, apq_plus_a_inv) # b x 2 x n x n d, s = self.takagi_factorization.factorize(y) # d = b x n d = torch.atan(d) dist = self.metric.compute_metric(d) return dist
def inner(self, z: torch.Tensor, u: torch.Tensor, v=None, *, keepdim=False) -> torch.Tensor: """ Inner product for tangent vectors at point :math:`z`. For the bounded domain model, the inner product at point z of the vectors u, v it is (z, u, v are complex symmetric matrices): g_{z}(u, v) = tr[ (Id - ẑz)^-1 u (Id - zẑ)^-1 \ov{v} ] :param z: torch.Tensor point on the manifold: b x 2 x n x n :param u: torch.Tensor tangent vector at point :math:`z`: b x 2 x n x n :param v: Optional[torch.Tensor] tangent vector at point :math:`z`: b x 2 x n x n :param keepdim: bool keep the last dim? :return: torch.Tensor inner product (broadcastable): b x 2 x 1 x 1 """ if v is None: v = u identity = sm.identity_like(z) conj_z = sm.conjugate(z) conj_z_z = sm.bmm(conj_z, z) z_conj_z = sm.bmm(z, conj_z) inv_id_minus_conj_z_z = sm.subtract(identity, conj_z_z) inv_id_minus_z_conj_z = sm.subtract(identity, z_conj_z) inv_id_minus_conj_z_z = sm.inverse(inv_id_minus_conj_z_z) inv_id_minus_z_conj_z = sm.inverse(inv_id_minus_z_conj_z) res = sm.bmm3(inv_id_minus_conj_z_z, u, inv_id_minus_z_conj_z) res = sm.bmm(res, sm.conjugate(v)) real_part = sm.trace(sm.real(res), keepdim=True) real_part = torch.unsqueeze(real_part, -1) # b x 1 x 1 return sm.stick(real_part, real_part) # # b x 2 x 1 x 1