예제 #1
0
def test_invertible():
    assert ask(Q.invertible(X), Q.invertible(X))
    assert ask(Q.invertible(Y)) is False
    assert ask(Q.invertible(X * Y), Q.invertible(X)) is False
    assert ask(Q.invertible(X * Z), Q.invertible(X)) is None
    assert ask(Q.invertible(X * Z), Q.invertible(X) & Q.invertible(Z)) is True
    assert ask(Q.invertible(X.T)) is None
    assert ask(Q.invertible(X.T), Q.invertible(X)) is True
    assert ask(Q.invertible(X.I)) is True
    assert ask(Q.invertible(Identity(3))) is True
    assert ask(Q.invertible(ZeroMatrix(3, 3))) is False
    assert ask(Q.invertible(OneMatrix(1, 1))) is True
    assert ask(Q.invertible(OneMatrix(3, 3))) is False
    assert ask(Q.invertible(X), Q.fullrank(X) & Q.square(X))
예제 #2
0
def test_positive_definite():
    assert ask(Q.positive_definite(X), Q.positive_definite(X))
    assert ask(Q.positive_definite(X.T), Q.positive_definite(X)) is True
    assert ask(Q.positive_definite(X.I), Q.positive_definite(X)) is True
    assert ask(Q.positive_definite(Y)) is False
    assert ask(Q.positive_definite(X)) is None
    assert ask(Q.positive_definite(X**3), Q.positive_definite(X))
    assert ask(Q.positive_definite(X * Z * X),
               Q.positive_definite(X) & Q.positive_definite(Z)) is True
    assert ask(Q.positive_definite(X), Q.orthogonal(X))
    assert ask(Q.positive_definite(Y.T * X * Y),
               Q.positive_definite(X) & Q.fullrank(Y)) is True
    assert not ask(Q.positive_definite(Y.T * X * Y), Q.positive_definite(X))
    assert ask(Q.positive_definite(Identity(3))) is True
    assert ask(Q.positive_definite(ZeroMatrix(3, 3))) is False
    assert ask(Q.positive_definite(OneMatrix(1, 1))) is True
    assert ask(Q.positive_definite(OneMatrix(3, 3))) is False
    assert ask(Q.positive_definite(X + Z),
               Q.positive_definite(X) & Q.positive_definite(Z)) is True
    assert not ask(Q.positive_definite(-X), Q.positive_definite(X))
    assert ask(Q.positive(X[1, 1]), Q.positive_definite(X))
예제 #3
0
def test_invertible_fullrank():
    assert ask(Q.invertible(X), Q.fullrank(X)) is True
예제 #4
0
def test_fullrank():
    assert ask(Q.fullrank(X), Q.fullrank(X))
    assert ask(Q.fullrank(X**2), Q.fullrank(X))
    assert ask(Q.fullrank(X.T), Q.fullrank(X)) is True
    assert ask(Q.fullrank(X)) is None
    assert ask(Q.fullrank(Y)) is None
    assert ask(Q.fullrank(X * Z), Q.fullrank(X) & Q.fullrank(Z)) is True
    assert ask(Q.fullrank(Identity(3))) is True
    assert ask(Q.fullrank(ZeroMatrix(3, 3))) is False
    assert ask(Q.fullrank(OneMatrix(1, 1))) is True
    assert ask(Q.fullrank(OneMatrix(3, 3))) is False
    assert ask(Q.invertible(X), ~Q.fullrank(X)) == False
예제 #5
0
def get_known_facts(x=None):
    """
    Facts between unary predicates.

    Parameters
    ==========

    x : Symbol, optional
        Placeholder symbol for unary facts. Default is ``Symbol('x')``.

    Returns
    =======

    fact : Known facts in conjugated normal form.

    """
    if x is None:
        x = Symbol('x')

    fact = And(
        # primitive predicates for extended real exclude each other.
        Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x),
                  Q.positive(x), Q.positive_infinite(x)),

        # build complex plane
        Exclusive(Q.real(x), Q.imaginary(x)),
        Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)),

        # other subsets of complex
        Exclusive(Q.transcendental(x), Q.algebraic(x)),
        Equivalent(Q.real(x),
                   Q.rational(x) | Q.irrational(x)),
        Exclusive(Q.irrational(x), Q.rational(x)),
        Implies(Q.rational(x), Q.algebraic(x)),

        # integers
        Exclusive(Q.even(x), Q.odd(x)),
        Implies(Q.integer(x), Q.rational(x)),
        Implies(Q.zero(x), Q.even(x)),
        Exclusive(Q.composite(x), Q.prime(x)),
        Implies(Q.composite(x) | Q.prime(x),
                Q.integer(x) & Q.positive(x)),
        Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)),

        # hermitian and antihermitian
        Implies(Q.real(x), Q.hermitian(x)),
        Implies(Q.imaginary(x), Q.antihermitian(x)),
        Implies(Q.zero(x),
                Q.hermitian(x) | Q.antihermitian(x)),

        # define finity and infinity, and build extended real line
        Exclusive(Q.infinite(x), Q.finite(x)),
        Implies(Q.complex(x), Q.finite(x)),
        Implies(
            Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)),

        # commutativity
        Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)),

        # matrices
        Implies(Q.orthogonal(x), Q.positive_definite(x)),
        Implies(Q.orthogonal(x), Q.unitary(x)),
        Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)),
        Implies(Q.unitary(x), Q.normal(x)),
        Implies(Q.unitary(x), Q.invertible(x)),
        Implies(Q.normal(x), Q.square(x)),
        Implies(Q.diagonal(x), Q.normal(x)),
        Implies(Q.positive_definite(x), Q.invertible(x)),
        Implies(Q.diagonal(x), Q.upper_triangular(x)),
        Implies(Q.diagonal(x), Q.lower_triangular(x)),
        Implies(Q.lower_triangular(x), Q.triangular(x)),
        Implies(Q.upper_triangular(x), Q.triangular(x)),
        Implies(Q.triangular(x),
                Q.upper_triangular(x) | Q.lower_triangular(x)),
        Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)),
        Implies(Q.diagonal(x), Q.symmetric(x)),
        Implies(Q.unit_triangular(x), Q.triangular(x)),
        Implies(Q.invertible(x), Q.fullrank(x)),
        Implies(Q.invertible(x), Q.square(x)),
        Implies(Q.symmetric(x), Q.square(x)),
        Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)),
        Equivalent(Q.invertible(x), ~Q.singular(x)),
        Implies(Q.integer_elements(x), Q.real_elements(x)),
        Implies(Q.real_elements(x), Q.complex_elements(x)),
    )
    return fact