def test_codegen_array_recognize_matrix_mul_lines(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1)) assert recognize_matrix_expression(cg) == Trace(M) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1), (2, 3)) assert recognize_matrix_expression(cg) == [Trace(M), Trace(N)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(M*N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3)) assert recognize_matrix_expression(cg) == Trace(M*N.T) cg = parse_indexed_expression((M*N*P)[i,j]) assert recognize_matrix_expression(cg) == M*N*P cg = CodegenArrayContraction.from_MatMul(M*N*P) assert recognize_matrix_expression(cg) == M*N*P cg = parse_indexed_expression((M*N.T*P)[i,j]) assert recognize_matrix_expression(cg) == M*N.T*P cg = CodegenArrayContraction.from_MatMul(M*N.T*P) assert recognize_matrix_expression(cg) == M*N.T*P cg = CodegenArrayContraction(CodegenArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6)) assert recognize_matrix_expression(cg) == [M*N, P*Q] expr = -2*M*N elem = expr[i, j] cg = parse_indexed_expression(elem) assert recognize_matrix_expression(cg) == -2*M*N
def test_codegen_array_contraction_construction(): cg = CodegenArrayContraction(A) assert cg == A s = Sum(A[i]*B[i], (i, 0, 3)) cg = parse_indexed_expression(s) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 0)) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) expr = M*N result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) assert CodegenArrayContraction.from_MatMul(expr) == result elem = expr[i, j] assert parse_indexed_expression(elem) == result expr = M*N*M result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, M), (1, 2), (3, 4)) assert CodegenArrayContraction.from_MatMul(expr) == result elem = expr[i, j] result = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) cg = parse_indexed_expression(elem) cg = cg.sort_args_by_name() assert cg == result
def test_push_indices_up_and_down(): indices = list(range(10)) contraction_indices = [(0, 6), (2, 8)] assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13) assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5) assert CodegenArrayDiagonal._push_indices_down(contraction_indices, indices) == (0, 1, 2, 3, 4, 5, 7, 9, 10, 11) assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == (0, 1, 2, 3, 4, 5, None, 6, None, 7) contraction_indices = [(1, 2), (7, 8)] assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13) assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5) assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13) assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == (0, 1, None, 2, 3, 4, 5, 6, None, 7)
def test_contraction_tp_additions(): a = CodegenArrayElementwiseAdd(CodegenArrayTensorProduct(M, N), CodegenArrayTensorProduct(N, M)) tp = CodegenArrayTensorProduct(P, a, Q) expr = CodegenArrayContraction(tp, (3, 4)) expected = CodegenArrayTensorProduct( P, CodegenArrayElementwiseAdd( CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), CodegenArrayContraction(CodegenArrayTensorProduct(N, M), (1, 2)), ), Q) assert expr == expected assert recognize_matrix_expression(expr) == CodegenArrayTensorProduct( P, M * N + N * M, Q) expr = CodegenArrayContraction(tp, (1, 2), (3, 4), (5, 6)) result = CodegenArrayContraction( CodegenArrayTensorProduct( P, CodegenArrayElementwiseAdd( CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), CodegenArrayContraction(CodegenArrayTensorProduct(N, M), (1, 2)), ), Q), (1, 2), (3, 4)) assert expr == result assert recognize_matrix_expression(expr) == P * (M * N + N * M) * Q
def test_contraction_permutation_mix(): Me = M.subs(k, 3).as_explicit() Ne = N.subs(k, 3).as_explicit() cg1 = CodegenArrayContraction( CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation([0, 2, 1, 3])), (2, 3)) cg2 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 3)) assert cg1 == cg2 assert recognize_matrix_expression(cg2) == M * N.T cge1 = tensorcontraction( permutedims(tensorproduct(Me, Ne), Permutation([0, 2, 1, 3])), (2, 3)) cge2 = tensorcontraction(tensorproduct(Me, Ne), (1, 3)) assert cge1 == cge2 cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation([0, 1, 3, 2])) cg2 = CodegenArrayTensorProduct( M, CodegenArrayPermuteDims(N, Permutation([1, 0]))) assert cg1 == cg2 assert recognize_matrix_expression(cg1) == [M, N.T] assert recognize_matrix_expression(cg2) == [M, N.T] cg1 = CodegenArrayContraction( CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])), (1, 2), (3, 5)) cg2 = CodegenArrayContraction( CodegenArrayTensorProduct( M, N, P, CodegenArrayPermuteDims(Q, Permutation([1, 0]))), (1, 5), (2, 3)) assert cg1 == cg2 assert recognize_matrix_expression(cg1) == [M * P.T * Trace(N), Q.T] assert recognize_matrix_expression(cg2) == [M * P.T * Trace(N), Q.T] cg1 = CodegenArrayContraction( CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 2, 7, 5, 3])), (0, 1), (2, 6), (3, 7)) cg2 = CodegenArrayPermuteDims( CodegenArrayContraction(CodegenArrayTensorProduct(M, P, Q, N), (0, 1), (2, 3), (4, 7)), [1, 0]) assert cg1 == cg2 cg1 = CodegenArrayContraction( CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([1, 0, 4, 6, 7, 2, 5, 3])), (0, 1), (2, 6), (3, 7)) cg2 = CodegenArrayPermuteDims( CodegenArrayContraction( CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), N, P, Q), (0, 1), (3, 6), (4, 5)), Permutation([1, 0])) assert cg1 == cg2
def test_codegen_array_recognize_matrix_mul_lines(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1)) assert recognize_matrix_expression(cg) == Trace(M) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1), (2, 3)) assert recognize_matrix_expression(cg) == [Trace(M), Trace(N)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(M * N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3)) assert recognize_matrix_expression(cg) == Trace(M * N.T) cg = parse_indexed_expression((M * N * P)[i, j]) assert recognize_matrix_expression(cg) == M * N * P cg = CodegenArrayContraction.from_MatMul(M * N * P) assert recognize_matrix_expression(cg) == M * N * P cg = parse_indexed_expression((M * N.T * P)[i, j]) assert recognize_matrix_expression(cg) == M * N.T * P cg = CodegenArrayContraction.from_MatMul(M * N.T * P) assert recognize_matrix_expression(cg) == M * N.T * P cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 2), (5, 6)) assert recognize_matrix_expression(cg) == [M * N, P * Q] expr = -2 * M * N elem = expr[i, j] cg = parse_indexed_expression(elem) assert recognize_matrix_expression(cg) == -2 * M * N
def test_special_matrices(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) expr = a.T*b elem = expr[0, 0] cg = parse_indexed_expression(elem) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(a, b), (0, 2)) assert recognize_matrix_expression(cg) == a.T*b
def test_recognize_diagonalized_vectors(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2)) assert recognize_matrix_expression(cg) == A*a cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4)) assert recognize_matrix_expression(cg) == A*DiagonalizeVector(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4)) assert recognize_matrix_expression(cg) == A.T*DiagonalizeVector(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9)) assert recognize_matrix_expression(cg).doit() == A.T*DiagonalizeVector(a)*DiagonalizeVector(b)*DiagonalizeVector(a)*B.T
def test_codegen_permutedims_sink(): cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [0, 1, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayTensorProduct( M, CodegenArrayPermuteDims(N, [1, 0])) assert recognize_matrix_expression(sunk) == [M, N.T] cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayTensorProduct( CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0])) assert recognize_matrix_expression(sunk) == [M.T, N.T] cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [3, 2, 1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayTensorProduct( CodegenArrayPermuteDims(N, [1, 0]), CodegenArrayPermuteDims(M, [1, 0])) assert recognize_matrix_expression(sunk) == [N.T, M.T] cg = CodegenArrayPermuteDims(CodegenArrayContraction( CodegenArrayTensorProduct(M, N), (1, 2)), [1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayContraction( CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [[0, 3]]), (1, 2)) cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayTensorProduct( CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0])) cg = CodegenArrayPermuteDims(CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == CodegenArrayContraction( CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4))
def test_codegen_array_contraction_indices_types(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (0, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (1, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (2, 0)], [(1, 0), (2, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 4), (2, 5)]
def test_nested_array_elementwise_add(): cg = CodegenArrayContraction(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayTensorProduct(N, M) ), (1, 2)) result = CodegenArrayElementwiseAdd( CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), CodegenArrayContraction(CodegenArrayTensorProduct(N, M), (1, 2)) ) assert cg == result cg = CodegenArrayDiagonal(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayTensorProduct(N, M) ), (1, 2)) result = CodegenArrayElementwiseAdd( CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)), CodegenArrayDiagonal(CodegenArrayTensorProduct(N, M), (1, 2)) ) assert cg == result
def test_codegen_array_shape(): expr = CodegenArrayTensorProduct(M, N, P, Q) assert expr.shape == (k, k, k, k, k, k, k, k) Z = MatrixSymbol("Z", m, n) expr = CodegenArrayTensorProduct(M, Z) assert expr.shape == (k, k, m, n) expr2 = CodegenArrayContraction(expr, (0, 1)) assert expr2.shape == (m, n) expr2 = CodegenArrayDiagonal(expr, (0, 1)) assert expr2.shape == (m, n, k) exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0]) assert exprp.shape == (m, k, n, k) expr3 = CodegenArrayTensorProduct(N, Z) expr2 = CodegenArrayElementwiseAdd(expr, expr3) assert expr2.shape == (k, k, m, n) # Contraction along axes with discordant dimensions: raises(ValueError, lambda: CodegenArrayContraction(expr, (1, 2))) # Also diagonal needs the same dimensions: raises(ValueError, lambda: CodegenArrayDiagonal(expr, (1, 2)))
def test_codegen_array_parse(): expr = M[i, j] assert _codegen_array_parse(expr) == (M, (i, j)) expr = M[i, j] * N[k, l] assert _codegen_array_parse(expr) == (CodegenArrayTensorProduct(M, N), (i, j, k, l)) expr = M[i, j] * N[j, k] assert _codegen_array_parse(expr) == (CodegenArrayDiagonal( CodegenArrayTensorProduct(M, N), (1, 2)), (i, k, j)) expr = Sum(M[i, j] * N[j, k], (j, 0, k - 1)) assert _codegen_array_parse(expr) == (CodegenArrayContraction( CodegenArrayTensorProduct(M, N), (1, 2)), (i, k)) expr = M[i, j] + N[i, j] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, N), (i, j)) expr = M[i, j] + N[j, i] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd( M, CodegenArrayPermuteDims(N, Permutation([1, 0]))), (i, j)) expr = M[i, j] + M[j, i] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd( M, CodegenArrayPermuteDims(M, Permutation([1, 0]))), (i, j)) expr = (M * N * P)[i, j] assert _codegen_array_parse(expr) == (CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j)) expr = expr.function # Disregard summation in previous expression ret1, ret2 = _codegen_array_parse(expr) assert ret1 == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)) assert str(ret2) == "(i, j, _i_1, _i_2)" expr = KroneckerDelta(i, j) * M[i, k] assert _codegen_array_parse(expr) == (M, ({i, j}, k)) expr = KroneckerDelta(j, k) * (M[i, j] * N[k, l] + N[i, j] * M[k, l]) assert _codegen_array_parse(expr) == (CodegenArrayDiagonal( CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))), (1, 2)), (i, l, frozenset({j, k}))) expr = M[i, i] assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(M, (0, 1)), (i, ))
def test_parsing_of_matrix_expressions(): expr = M * N assert parse_matrix_expression(expr) == CodegenArrayContraction( CodegenArrayTensorProduct(M, N), (1, 2)) expr = Transpose(M) assert parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0]) expr = M * Transpose(N) assert parse_matrix_expression(expr) == CodegenArrayContraction( CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])), (1, 2)) expr = 3 * M * N res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr == rexpr expr = 3 * M + N * M.T * M + 4 * k * N res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr == rexpr expr = Inverse(M) * N rexpr = recognize_matrix_expression(parse_matrix_expression(expr)) assert expr == rexpr expr = M**2 rexpr = recognize_matrix_expression(parse_matrix_expression(expr)) assert expr == rexpr expr = M * (2 * N + 3 * M) res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr.expand() == rexpr.doit() expr = Trace(M) result = CodegenArrayContraction(M, (0, 1)) assert parse_matrix_expression(expr) == result
def test_codegen_einsum(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M*N) f = lambdify((M, N), cg, 'numpy') ma = np.matrix([[1, 2], [3, 4]]) mb = np.matrix([[1,-2], [-1, 3]]) assert (f(ma, mb) == ma*mb).all()
def test_codegen_array_doit(): M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) M = M.as_explicit() N = N.as_explicit() P = P.as_explicit() Q = Q.as_explicit() expr = CodegenArrayTensorProduct(M, N, P, Q) assert expr.doit() == tensorproduct(M, N, P, Q) expr2 = CodegenArrayContraction(expr, (0, 1)) assert expr2.doit() == tensorcontraction(tensorproduct(M, N, P, Q), (0, 1)) expr2 = CodegenArrayDiagonal(expr, (0, 1)) #assert expr2 = ... # TODO: not implemented expr = CodegenArrayTensorProduct(M, N) exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0]) assert exprp.doit() == permutedims(tensorproduct(M, N), [2, 1, 3, 0]) expr = CodegenArrayElementwiseAdd(M, N) assert expr.doit() == M + N
def test_recognize_expression_implicit_mul(): cg = CodegenArrayTensorProduct(a, b) assert recognize_matrix_expression(cg) == a*b.T cg = CodegenArrayTensorProduct(a, I, b) assert recognize_matrix_expression(cg) == a*b.T cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I), (1, 2)) assert recognize_matrix_expression(cg) == I cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(I, Identity(1)), [0, 2, 1, 3]) assert recognize_matrix_expression(cg) == I
def test_array_expr_zero_array(): za1 = ZeroArray(k, l, m, n) zm1 = ZeroMatrix(m, n) za2 = ZeroArray(k, m, m, n) zm2 = ZeroMatrix(m, m) zm3 = ZeroMatrix(k, k) assert CodegenArrayTensorProduct(M, N, za1) == ZeroArray(k, k, k, k, k, l, m, n) assert CodegenArrayTensorProduct(M, N, zm1) == ZeroArray(k, k, k, k, m, n) assert CodegenArrayContraction(za1, (3, )) == ZeroArray(k, l, m) assert CodegenArrayContraction(zm1, (1, )) == ZeroArray(m) assert CodegenArrayContraction(za2, (1, 2)) == ZeroArray(k, n) assert CodegenArrayContraction(zm2, (0, 1)) == 0 assert CodegenArrayDiagonal(za2, (1, 2)) == ZeroArray(k, n, m) assert CodegenArrayDiagonal(zm2, (0, 1)) == ZeroArray(m) assert CodegenArrayPermuteDims(za1, [2, 1, 3, 0]) == ZeroArray(m, l, n, k) assert CodegenArrayPermuteDims(zm1, [1, 0]) == ZeroArray(n, m) assert CodegenArrayElementwiseAdd(za1) == za1 assert CodegenArrayElementwiseAdd(zm1) == ZeroArray(m, n) tp1 = CodegenArrayTensorProduct(MatrixSymbol("A", k, l), MatrixSymbol("B", m, n)) assert CodegenArrayElementwiseAdd(tp1, za1) == tp1 tp2 = CodegenArrayTensorProduct(MatrixSymbol("C", k, l), MatrixSymbol("D", m, n)) assert CodegenArrayElementwiseAdd(tp1, za1, tp2) == CodegenArrayElementwiseAdd( tp1, tp2) assert CodegenArrayElementwiseAdd(M, zm3) == M assert CodegenArrayElementwiseAdd(M, N, zm3) == CodegenArrayElementwiseAdd(M, N)
def test_codegen_array_recognize_matrix_mul_lines(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1)) assert recognize_matrix_expression(cg) == Trace(M) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1), (2, 3)) assert recognize_matrix_expression(cg) == Trace(M) * Trace(N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(M * N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3)) assert recognize_matrix_expression(cg) == Trace(M * N.T) cg = parse_indexed_expression((M * N * P)[i, j]) assert recognize_matrix_expression(cg) == M * N * P cg = parse_matrix_expression(M * N * P) assert recognize_matrix_expression(cg) == M * N * P cg = parse_indexed_expression((M * N.T * P)[i, j]) assert recognize_matrix_expression(cg) == M * N.T * P cg = parse_matrix_expression(M * N.T * P) assert recognize_matrix_expression(cg) == M * N.T * P cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 2), (5, 6)) assert recognize_matrix_expression(cg) == CodegenArrayTensorProduct( M * N, P * Q) expr = -2 * M * N elem = expr[i, j] cg = parse_indexed_expression(elem) assert recognize_matrix_expression(cg) == -2 * M * N a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) cg = CodegenArrayPermuteDims( CodegenArrayContraction( CodegenArrayTensorProduct( a, CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(b, c), CodegenArrayTensorProduct(c, b), )), (2, 4)), [0, 1, 3, 2]) assert recognize_matrix_expression(cg) == a * (b.T * c + c.T * b) za = ZeroArray(m, n) assert recognize_matrix_expression(za) == ZeroMatrix(m, n) cg = CodegenArrayTensorProduct(3, M) assert recognize_matrix_expression(cg) == 3 * M
def test_normalize_diagonal_contraction(): tp = CodegenArrayTensorProduct(M, N, P, Q) expr = CodegenArrayContraction(CodegenArrayDiagonal(tp, (1, 3, 4)), (0, 3)) result = CodegenArrayDiagonal(CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 6)), (0, 2, 3)) assert expr == result expr = CodegenArrayContraction(CodegenArrayDiagonal(tp, (0, 1, 2, 3, 7)), (1, 2, 3)) result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 1, 2, 3, 5, 6, 7)) assert expr == result expr = CodegenArrayContraction(CodegenArrayDiagonal(tp, (0, 2, 6, 7)), (1, 2, 3)) result = CodegenArrayDiagonal(CodegenArrayContraction(tp, (3, 4, 5)), (0, 2, 3, 4)) assert expr == result td = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (0, 3)) expr = CodegenArrayContraction(td, (2, 1), (0, 4, 6, 5, 3)) result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 1, 3, 5, 6, 7), (2, 4)) assert expr == result
def test_codegen_einsum(): if not tf: skip("TensorFlow not installed") session = tf.Session() M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M*N) f = lambdify((M, N), cg, 'tensorflow') ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) y = session.run(f(ma, mb)) c = session.run(tf.matmul(ma, mb)) assert (y == c).all()
def test_codegen_einsum(): if not tf: skip("TensorFlow not installed") session = tf.Session() M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M * N) f = lambdify((M, N), cg, 'tensorflow') ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1, -2], [-1, 3]]) y = session.run(f(ma, mb)) c = session.run(tf.matmul(ma, mb)) assert (y == c).all()
def test_remove_trivial_dims(): # Tensor Product: assert _remove_trivial_dims(CodegenArrayTensorProduct(a, b)) == (a * b.T, [1, 3]) assert _remove_trivial_dims(CodegenArrayTensorProduct(a.T, b)) == (a * b.T, [0, 3]) assert _remove_trivial_dims(CodegenArrayTensorProduct(a, b.T)) == (a * b.T, [1, 2]) assert _remove_trivial_dims(CodegenArrayTensorProduct(a.T, b.T)) == (a * b.T, [0, 2]) assert _remove_trivial_dims(CodegenArrayTensorProduct(I, a.T, b.T)) == (a * b.T, [0, 1, 2, 4]) assert _remove_trivial_dims(CodegenArrayTensorProduct(a.T, I, b.T)) == (a * b.T, [0, 2, 3, 4]) assert _remove_trivial_dims(CodegenArrayTensorProduct(a, I)) == (a, [2, 3]) assert _remove_trivial_dims(CodegenArrayTensorProduct(I, a)) == (a, [0, 1]) assert _remove_trivial_dims(CodegenArrayTensorProduct(a.T, b.T, c, d)) == ( CodegenArrayTensorProduct(a * b.T, c * d.T), [0, 2, 5, 7]) assert _remove_trivial_dims(CodegenArrayTensorProduct(a.T, I, b.T, c, d, I)) == ( CodegenArrayTensorProduct(a * b.T, c * d.T, I), [0, 2, 3, 4, 7, 9]) # Addition: cg = CodegenArrayElementwiseAdd(CodegenArrayTensorProduct(a, b), CodegenArrayTensorProduct(c, d)) assert _remove_trivial_dims(cg) == (a * b.T + c * d.T, [1, 3]) # Permute Dims: cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(a, b), Permutation(3)(1, 2)) assert _remove_trivial_dims(cg) == (a * b.T, [2, 3]) cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(a, I, b), Permutation(5)(1, 2, 3, 4)) assert _remove_trivial_dims(cg) == (a * b.T, [2, 3, 4, 5]) cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(I, b, a), Permutation(5)(1, 2, 4, 5, 3)) assert _remove_trivial_dims(cg) == (b * a.T, [0, 1, 2, 3]) # Diagonal: cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, a), (1, 2)) assert _remove_trivial_dims(cg) == (cg, []) # Contraction: cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, a), (1, 2)) assert _remove_trivial_dims(cg) == (cg, [])
def test_codegen_einsum(): if not tf: skip("TensorFlow not installed") graph = tf.Graph() with graph.as_default(): session = tf.compat.v1.Session(graph=graph) M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M * N) f = lambdify((M, N), cg, "tensorflow") ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1, -2], [-1, 3]]) y = session.run(f(ma, mb)) c = session.run(tf.matmul(ma, mb)) assert (y == c).all()
def test_permute_tensor_product(): cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 1, 0, 5, 4, 6, 7])) cg2 = CodegenArrayTensorProduct(N, CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(P, [1, 0]), Q) assert cg1 == cg2 # TODO: reverse operation starting with `CodegenArrayPermuteDims` and getting down to `bb`... cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 5, 0, 1, 6, 7])) cg2 = CodegenArrayTensorProduct(N, P, M, Q) assert cg1 == cg2 cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q), Permutation([2, 3, 4, 6, 5, 7, 0, 1])) assert cg1.expr == CodegenArrayTensorProduct(N, P, Q, M) assert cg1.permutation == Permutation([0, 1, 2, 4, 3, 5, 6, 7]) cg1 = CodegenArrayContraction( CodegenArrayPermuteDims(CodegenArrayTensorProduct(N, Q, Q, M), [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]) cg2 = CodegenArrayPermuteDims( CodegenArrayContraction(CodegenArrayTensorProduct(Q, Q, N, M), (3, 5, 6)), [0, 2, 3, 1, 4]) assert cg1 == cg2 cg1 = CodegenArrayContraction( CodegenArrayContraction( CodegenArrayContraction( CodegenArrayContraction( CodegenArrayPermuteDims( CodegenArrayTensorProduct(N, Q, Q, M), [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]), [1, 3, 4]), [1]), [0]) cg2 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, Q, Q), (0, 3, 5), (1, 4, 7), (2, ), (6, )) assert cg1 == cg2
def test_recognize_diagonalized_vectors(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) X = MatrixSymbol("X", k, k) x = MatrixSymbol("x", k, 1) I1 = Identity(1) I = Identity(k) # Check matrix recognition over trivial dimensions: cg = CodegenArrayTensorProduct(a, b) assert recognize_matrix_expression(cg) == a * b.T cg = CodegenArrayTensorProduct(I1, a, b) assert recognize_matrix_expression(cg) == a * I1 * b.T # Recognize trace inside a tensor product: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(A * B) * C # Transform diagonal operator to contraction: cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.transform_to_product() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagMatrix(a)), (1, 2)) assert recognize_matrix_expression(cg) == A * DiagMatrix(a) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, b), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction( CodegenArrayTensorProduct(DiagMatrix(a), b), (0, 2)) assert recognize_matrix_expression(cg).doit() == DiagMatrix(a) * b cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagMatrix(a)), (0, 2)) assert recognize_matrix_expression(cg) == A.T * DiagMatrix(a) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, I1), (0, 2), (3, 5)) assert cg.transform_to_product() == CodegenArrayContraction( CodegenArrayTensorProduct(I, DiagMatrix(x), I1), (0, 2)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, A, B), (1, 2), (5, 6)) assert cg.transform_to_product() == CodegenArrayDiagonal( CodegenArrayContraction( CodegenArrayTensorProduct(I, DiagMatrix(x), A, B), (1, 2)), (3, 4)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I1), (1, 2)) assert isinstance(cg, CodegenArrayDiagonal) assert cg.diagonal_indices == ((1, 2), ) assert recognize_matrix_expression(cg) == x cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction( CodegenArrayTensorProduct(DiagMatrix(x), I), (0, 2)) assert recognize_matrix_expression(cg).doit() == DiagMatrix(x) cg = CodegenArrayDiagonal(x, (1, )) assert cg == x # Ignore identity matrices with contractions: cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, A, I, I), (0, 2), (1, 3), (5, 7)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == Trace(A) * I cg = CodegenArrayContraction(CodegenArrayTensorProduct(Trace(A) * I, I, I), (1, 5), (3, 4)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg).doit() == Trace(A) * I # Add DiagMatrix when required: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == A * a cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagMatrix(a), B), (1, 2), (3, 4)) assert recognize_matrix_expression(cg) == A * DiagMatrix(a) * B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagMatrix(a), B), (0, 2), (3, 4)) assert recognize_matrix_expression(cg) == A.T * DiagMatrix(a) * B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagMatrix(a), DiagMatrix(b), DiagMatrix(a), B), (0, 2), (3, 4), (5, 7), (6, 9)) assert recognize_matrix_expression( cg).doit() == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T cg = CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4)) assert recognize_matrix_expression(cg).doit() == Identity(1) cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9)) assert recognize_matrix_expression( cg.split_multiple_contractions()).doit() == A cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagMatrix(a), C, DiagMatrix(a), B), (1, 2), (3, 4), (5, 6), (7, 8)) assert recognize_matrix_expression( cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B cg = CodegenArrayContraction( CodegenArrayTensorProduct(a, I1, b, I1, (a.T * b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions().dummy_eq( CodegenArrayContraction( CodegenArrayTensorProduct(a, I1, b, I1, (a.T * b).applyfunc(cos)), (1, 2), (3, 8), (5, 6), (7, 9))) assert recognize_matrix_expression(cg).dummy_eq( MatMul(a, I1, (a.T * b).applyfunc(cos), Transpose(I1), b.T)) cg = CodegenArrayContraction( CodegenArrayTensorProduct(A.T, a, b, b.T, (A * X * b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions().dummy_eq( CodegenArrayContraction( CodegenArrayTensorProduct(A.T, DiagMatrix(a), b, b.T, (A * X * b).applyfunc(cos)), (1, 2), (3, 8), (5, 6, 9))) # assert recognize_matrix_expression(cg) # Check no overlap of lines: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7)) assert cg.split_multiple_contractions() == cg cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3)) assert cg.split_multiple_contractions() == cg
def test_codegen_array_contraction_construction(): cg = CodegenArrayContraction(A) assert cg == A s = Sum(A[i] * B[i], (i, 0, 3)) cg = parse_indexed_expression(s) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 0)) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) expr = M * N result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) assert CodegenArrayContraction.from_MatMul(expr) == result elem = expr[i, j] assert parse_indexed_expression(elem) == result expr = M * N * M result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, M), (1, 2), (3, 4)) assert CodegenArrayContraction.from_MatMul(expr) == result elem = expr[i, j] result = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) cg = parse_indexed_expression(elem) cg = cg.sort_args_by_name() assert cg == result
def test_codegen_array_flatten(): # Flatten nested CodegenArrayTensorProduct objects: expr1 = CodegenArrayTensorProduct(M, N) expr2 = CodegenArrayTensorProduct(P, Q) expr = CodegenArrayTensorProduct(expr1, expr2) assert expr == CodegenArrayTensorProduct(M, N, P, Q) assert expr.args == (M, N, P, Q) # Flatten mixed CodegenArrayTensorProduct and CodegenArrayContraction objects: cg1 = CodegenArrayContraction(expr1, (1, 2)) cg2 = CodegenArrayContraction(expr2, (0, 3)) expr = CodegenArrayTensorProduct(cg1, cg2) assert expr == CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7)) expr = CodegenArrayTensorProduct(M, cg1) assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (3, 4)) # Flatten nested CodegenArrayContraction objects: cgnested = CodegenArrayContraction(cg1, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) cgnested = CodegenArrayContraction(CodegenArrayTensorProduct(cg1, cg2), (0, 3)) assert cgnested == CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7)) cg3 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cgnested = CodegenArrayContraction(cg3, (0, 1)) assert cgnested == CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4)) cgnested = CodegenArrayContraction(cg3, (0, 3), (1, 2)) assert cgnested == CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6)) cg4 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = CodegenArrayContraction(cg4, (0, 1)) assert cgnested == CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7)) cgnested = CodegenArrayContraction(cg4, (0, 1), (2, 3)) assert cgnested == CodegenArrayContraction( CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6)) cg = CodegenArrayDiagonal(cg4) assert cg == cg4 assert isinstance(cg, type(cg4)) # Flatten nested CodegenArrayDiagonal objects: cg1 = CodegenArrayDiagonal(expr1, (1, 2)) cg2 = CodegenArrayDiagonal(expr2, (0, 3)) cg3 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cg4 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = CodegenArrayDiagonal(cg1, (0, 1)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2), (0, 3)) cgnested = CodegenArrayDiagonal(cg3, (1, 2)) assert cgnested == CodegenArrayDiagonal( CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6)) cgnested = CodegenArrayDiagonal(cg4, (1, 2)) assert cgnested == CodegenArrayDiagonal( CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4))
def tensorcontraction(array, *contraction_axes): """ Contraction of an array-like object on the specified axes. Examples ======== >>> from sympy import Array, tensorcontraction >>> from sympy import Matrix, eye >>> tensorcontraction(eye(3), (0, 1)) 3 >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensorcontraction(A, (0, 2)) [21, 30] Matrix multiplication may be emulated with a proper combination of ``tensorcontraction`` and ``tensorproduct`` >>> from sympy import tensorproduct >>> from sympy.abc import a,b,c,d,e,f,g,h >>> m1 = Matrix([[a, b], [c, d]]) >>> m2 = Matrix([[e, f], [g, h]]) >>> p = tensorproduct(m1, m2) >>> p [[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]] >>> tensorcontraction(p, (1, 2)) [[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]] >>> m1*m2 Matrix([ [a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]) """ from sympy.codegen.array_utils import _CodegenArrayAbstract, CodegenArrayContraction from sympy.tensor.array.expressions.array_expressions import _ArrayExpr if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract)): return CodegenArrayContraction(array, *contraction_axes) array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes) # Compute the contracted array: # # 1. external for loops on all uncontracted indices. # Uncontracted indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all contracted indices. # It sums the values of the absolute contracted index and the absolute # uncontracted index for the external loop. contracted_array = [] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = S.Zero for sum_to_index in itertools.product(*summed_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum += array[idx] contracted_array.append(isum) if len(remaining_indices) == 0: assert len(contracted_array) == 1 return contracted_array[0] return type(array)(contracted_array, remaining_shape)
def test_push_indices_up_and_down(): indices = list(range(10)) contraction_indices = [(0, 6), (2, 8)] assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == ( 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, ) assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == ( None, 0, None, 1, 2, 3, None, 4, None, 5, ) assert CodegenArrayDiagonal._push_indices_down(contraction_indices, indices) == ( 0, 1, 2, 3, 4, 5, 7, 9, 10, 11, ) assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == ( 0, 1, 2, 3, 4, 5, None, 6, None, 7, ) contraction_indices = [(1, 2), (7, 8)] assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == ( 0, 3, 4, 5, 6, 9, 10, 11, 12, 13, ) assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == ( 0, None, None, 1, 2, 3, 4, None, None, 5, ) assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == ( 0, 3, 4, 5, 6, 9, 10, 11, 12, 13, ) assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == ( 0, 1, None, 2, 3, 4, 5, 6, None, 7, )
def test_parsing_of_matrix_expressions(): expr = M*N assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) expr = Transpose(M) assert parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0]) expr = M*Transpose(N) assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])), (1, 2)) expr = 3*M*N res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr == rexpr expr = 3*M + N*M.T*M + 4*k*N res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr == rexpr expr = Inverse(M)*N rexpr = recognize_matrix_expression(parse_matrix_expression(expr)) assert expr == rexpr expr = M**2 rexpr = recognize_matrix_expression(parse_matrix_expression(expr)) assert expr == rexpr expr = M*(2*N + 3*M) res = parse_matrix_expression(expr) rexpr = recognize_matrix_expression(res) assert expr == rexpr expr = Trace(M) result = CodegenArrayContraction(M, (0, 1)) assert parse_matrix_expression(expr) == result expr = 3*Trace(M) result = CodegenArrayContraction(CodegenArrayTensorProduct(3, M), (0, 1)) assert parse_matrix_expression(expr) == result expr = 3*Trace(Trace(M) * M) result = CodegenArrayContraction(CodegenArrayTensorProduct(3, M, M), (0, 1), (2, 3)) assert parse_matrix_expression(expr) == result expr = 3*Trace(M)**2 result = CodegenArrayContraction(CodegenArrayTensorProduct(3, M, M), (0, 1), (2, 3)) assert parse_matrix_expression(expr) == result expr = HadamardProduct(M, N) result = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3)) assert parse_matrix_expression(expr) == result expr = HadamardPower(M, 2) result = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, M), (0, 2), (1, 3)) assert parse_matrix_expression(expr) == result expr = M**2 assert isinstance(expr, MatPow) assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, M), (1, 2))
def test_recognize_diagonalized_vectors(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == A * a cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagonalizeVector(a), B), (1, 2), (3, 4)) assert recognize_matrix_expression(cg) == A * DiagonalizeVector(a) * B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagonalizeVector(a), B), (0, 2), (3, 4)) assert recognize_matrix_expression(cg) == A.T * DiagonalizeVector(a) * B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagonalizeVector(a), DiagonalizeVector(b), DiagonalizeVector(a), B), (0, 2), (3, 4), (5, 7), (6, 9)) assert recognize_matrix_expression(cg).doit() == A.T * DiagonalizeVector( a) * DiagonalizeVector(b) * DiagonalizeVector(a) * B.T I1 = Identity(1) cg = CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4)) assert recognize_matrix_expression(cg).doit() == Identity(1) I = Identity(k) cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9)) assert recognize_matrix_expression( cg.split_multiple_contractions()).doit() == A cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A, DiagonalizeVector(a), C, DiagonalizeVector(a), B), (1, 2), (3, 4), (5, 6), (7, 8)) assert recognize_matrix_expression( cg) == A * DiagonalizeVector(a) * C * DiagonalizeVector(a) * B cg = CodegenArrayContraction( CodegenArrayTensorProduct(a, I1, b, I1, (a.T * b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(a, I1, b, I1, (a.T * b).applyfunc(cos)), (1, 2), (3, 8), (5, 6), (7, 9)) assert recognize_matrix_expression(cg) == MatMul(a, I1, (a.T * b).applyfunc(cos), Transpose(I1), b.T) # Check no overlap of lines: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7)) raises(ValueError, lambda: cg.split_multiple_contractions()) cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3)) raises(ValueError, lambda: cg.split_multiple_contractions())