예제 #1
0
def test_isomorphisms():

    F, a, b = free_group("a, b")
    E, c, d = free_group("c, d")
    # Infinite groups with differently ordered relators.
    G = FpGroup(F, [a**2, b**3])
    H = FpGroup(F, [b**3, a**2])
    assert is_isomorphic(G, H)

    # Trivial Case
    # FpGroup -> FpGroup
    H = FpGroup(F, [a**3, b**3, (a*b)**2])
    F, c, d = free_group("c, d")
    G = FpGroup(F, [c**3, d**3, (c*d)**2])
    check, T =  group_isomorphism(G, H)
    assert check
    T(c**3*d**2) == a**3*b**2

    # FpGroup -> PermutationGroup
    # FpGroup is converted to the equivalent isomorphic group.
    F, a, b = free_group("a, b")
    G = FpGroup(F, [a**3, b**3, (a*b)**2])
    H = AlternatingGroup(4)
    check, T = group_isomorphism(G, H)
    assert check
    assert T(b*a*b**-1*a**-1*b**-1) == Permutation(0, 2, 3)
    assert T(b*a*b*a**-1*b**-1) == Permutation(0, 3, 2)

    # PermutationGroup -> PermutationGroup
    D = DihedralGroup(8)
    p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
    P = PermutationGroup(p)
    assert not is_isomorphic(D, P)

    A = CyclicGroup(5)
    B = CyclicGroup(7)
    assert not is_isomorphic(A, B)

    # Two groups of the same prime order are isomorphic to each other.
    G = FpGroup(F, [a, b**5])
    H = CyclicGroup(5)
    assert G.order() == H.order()
    assert is_isomorphic(G, H)
def test_isomorphisms():

    F, a, b = free_group("a, b")
    E, c, d = free_group("c, d")
    # Infinite groups with differently ordered relators.
    G = FpGroup(F, [a**2, b**3])
    H = FpGroup(F, [b**3, a**2])
    assert is_isomorphic(G, H)

    # Trivial Case
    # FpGroup -> FpGroup
    H = FpGroup(F, [a**3, b**3, (a*b)**2])
    F, c, d = free_group("c, d")
    G = FpGroup(F, [c**3, d**3, (c*d)**2])
    check, T =  group_isomorphism(G, H)
    assert check
    T(c**3*d**2) == a**3*b**2

    # FpGroup -> PermutationGroup
    # FpGroup is converted to the equivalent isomorphic group.
    F, a, b = free_group("a, b")
    G = FpGroup(F, [a**3, b**3, (a*b)**2])
    H = AlternatingGroup(4)
    check, T = group_isomorphism(G, H)
    assert check
    assert T(b*a*b**-1*a**-1*b**-1) == Permutation(0, 2, 3)
    assert T(b*a*b*a**-1*b**-1) == Permutation(0, 3, 2)

    # PermutationGroup -> PermutationGroup
    D = DihedralGroup(8)
    p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
    P = PermutationGroup(p)
    assert not is_isomorphic(D, P)

    A = CyclicGroup(5)
    B = CyclicGroup(7)
    assert not is_isomorphic(A, B)

    # Two groups of the same prime order are isomorphic to each other.
    G = FpGroup(F, [a, b**5])
    H = CyclicGroup(5)
    assert G.order() == H.order()
    assert is_isomorphic(G, H)
예제 #3
0
def test_composition_series():
    a = Permutation(1, 2, 3)
    b = Permutation(1, 2)
    G = PermutationGroup([a, b])
    comp_series = G.composition_series()
    assert comp_series == G.derived_series()
    # The first group in the composition series is always the group itself and
    # the last group in the series is the trivial group.
    S = SymmetricGroup(4)
    assert S.composition_series()[0] == S
    assert len(S.composition_series()) == 5
    A = AlternatingGroup(4)
    assert A.composition_series()[0] == A
    assert len(A.composition_series()) == 4

    # the composition series for C_8 is C_8 > C_4 > C_2 > triv
    G = CyclicGroup(8)
    series = G.composition_series()
    assert is_isomorphic(series[1], CyclicGroup(4))
    assert is_isomorphic(series[2], CyclicGroup(2))
    assert series[3].is_trivial